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This paper describes a system built to enable long-range rover autonomy using a stereo camera as the only
sensor. During a learning phase, the system builds a manifold map of overlapping submaps as it is piloted
along a route. The map is then used for localization as the rover repeats the route autonomously. The use of local
submaps allows the rover to faithfully repeat long routes without the need for an accurate global reconstruction.
Path following over nonplanar terrain is handled by performing localization in three dimensions and then
projecting this down to a local ground plane associated with the current submap to perform path tracking.
We have tested this system in an urban area and in a planetary analog setting in the Canadian High Arctic.
More than 32 km was covered—99.6% autonomously—with autonomous runs ranging from 45 m to 3.2 km, all
without the use of the global positioning system (GPS). Because it enables long-range autonomous behavior in
a single command cycle, visual teach and repeat is well suited to planetary applications, such as Mars sample
return, in which no GPS is available. C© 2010 Wiley Periodicals, Inc.

1. INTRODUCTION

In environments lacking a global positioning system
(GPS) or equivalent, long-range autonomous navigation for
rovers becomes a very difficult problem. Relative motion
estimation systems based on some combination of visual,
inertial, and odometric sensing have become increasingly
accurate. However, regardless of the level of accuracy, the
error in the position estimate for any of these methods will
grow without bound as the rover travels, unless periodic
global corrections are made.

This paper describes a complete system for long-range,
autonomous operation of a mobile robot in outdoor, un-
structured environments. This is achieved using only a
stereo camera for sensing and a teach-and-repeat opera-
tional strategy. During a learning phase—the teach pass—
the rover is piloted over the desired route (either manually
or using some external autonomous system) while the map-
ping system builds a manifold map composed of overlap-
ping submaps. The topologically connected submaps are
then used for localization during the autonomous traversal
phase—the repeat pass. The hybrid topological/metric for-
mulation alleviates the requirement for an accurate global
reconstruction while avoiding the unbounded error growth
of purely relative motion estimation. Furthermore, using a
series of small submaps decouples the computational com-
plexity of retracing a route from the path length. Similar
systems have been proposed for rovers navigating indoors
(Goedeme, Tuytelaars, Van Gool, Vanacker, & Nuttin, 2005),
in mines (Marshall, Barfoot, & Larsson, 2008), or outdoors
in planar environments (Royer, Lhuillier, Dhome, & Lavest,
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2007; Šegvić, Remazeilles, Diosi, & Chaumette, 2009), but
this is the first system shown to work over multikilometer
autonomous traverses in highly three-dimensional (3D),
outdoor, unstructured environments, without the use of
GPS.

Our visual teach-and-repeat system is appropriate to
many scenarios requiring rover autonomy in which GPS
is not available. We envision such a system being used to
support Mars sample return (Figure 1) or automated con-
voying of equipment between lunar landing sites and habi-
tats. Hence we have tested our system at a Mars/Moon ana-
log site on Devon Island in the Canadian High Arctic. For
completeness, we have also performed tests in an urban set-
ting, over grass, over challenging 3D terrain, and through
extreme lighting changes (indoor to outdoor). This paper
reports results for more than 32 km of evaluation of our al-
gorithm with 99.6% of the distance traveled autonomously,
all without the use of GPS.

2. RELATED WORKS

In an early paper on vision-based map building, Brooks
(1985) outlined some basic principles for robotic mapping:

– The world is inherently 3D. Localization and mapping
should reflect this.

– Uncertainty in sensing will lead to maps that are glob-
ally inconsistent. However, to enable robot autonomy,
maps only need to be locally consistent.

To deal with this, Brooks proposed a map composed of an
abstract graph of free-space primitives. Similar in concept,
Howard, Sukhatme, and Mataric (2006) designed and im-
plemented a multiagent system that represented the robot’s
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Figure 1. We envision our teach-and-repeat navigation framework being used to support Mars-sample-return mission operations
(image credit: NASA/JPL). After sample acquisition, the rover would retrace its route, returning to the lander in a single command
cycle. The image on the right shows our rover driving back along its outbound track in a planetary analog setting on Devon Island,
Canada.

map as a manifold embedded in a higher dimensional
space. Manifold mapping changes the way a map repre-
sents the world. A map becomes topological in the sense
that it defines a sequence of connected spaces, but the
spaces in the map may have a many-to-one correspon-
dence with the world. This topology is represented by di-
viding the map into a graph of submaps (Bosse, Newman,
Leonard, & Teller, 2004; Eade & Drummond, 2008; Howard
et al., 2006; Marshall et al., 2008) or using a continuous rel-
ative representation (Mei, Sibley, Cummins, Newman, &
Reid, 2009; Sibley, Mei, Reid, & Newman, 2009). Incremen-
tal errors that would cause inconsistencies in a purely met-
ric map disappear within the manifold representation. As
a result, loop-closing decisions may be delayed (Howard
et al., 2006) and loops may be closed in constant time, re-
gardless of the size of the map (Sibley et al., 2009). Manifold
mapping removes the constraint that maps be globally con-
sistent, but in order to be useful for localization, the neigh-
borhood around the robot must still appear to be locally
Euclidean.

To see where this local-Euclidean constraint ex-
presses itself in the simultaneous localization and mapping
(SLAM) problem, we examine the structure of the basic
SLAM equations. The SLAM problem is formulated proba-
bilistically as the task of estimating the joint posterior den-
sity of the map, m, and vehicle state at time k, vk , given all
previous measurements, z0:k , control inputs, u0:k , and prior
knowledge, x0 (Durrant-Whyte & Bailey, 2006):

p(xk, m|z0:k, u0:k, x0). (1)

Most solutions to this problem involve computing
p(zk |xk, m), the likelihood of the measurement vector, zk ,
given the current state and map estimates. The likelihood is
then expressed using an observation model, h(·), such that

zk = h(xk, m) + vk, (2)

where vk is observation noise. The properties of Eq. (2) de-
termine the form of the constraint. Most navigation sen-
sors discern something about the geometry in the robot’s
local neighborhood and, for a map to be useful, the neigh-
borhood must appear to be Euclidean to the sensor suite;
any deviation must be small enough to hide in vk . This is
the motivation behind the adaptive optimization scheme
in Sibley et al. (2009) and the choice of submap size in
Marshall et al. (2008). If this constraint is satisfied, the map
is still useful for localization, even if the global reconstruc-
tion is inaccurate.

Visual teach-and-repeat navigation systems have been
built on this very concept, combining topologically con-
nected key frames with a controller that attempts to
drive the robot to the same viewpoints along the path.
Our review of teach-and-repeat systems will focus on
camera-based systems. Marshall et al. (2008) and Newman,
Leonard, Tardos, and Neira (2002) both used planar laser-
ranging devices to build teach-and-repeat systems in in-
door corridors. The systems are well suited to these envi-
ronments (an underground mine in the former, an office
building in the latter), but in outdoor, unstructured en-
vironments, there is no guarantee that any walls will be
within the range of a laser sensor. Cameras, on the other
hand, are not dependent on scene topography. They require
only ambient light and scene texture to return useful im-
ages. Wide field-of-view and omnidirectional cameras cap-
ture the large-scale geometry and appearance of a scene,
which are generally unique to a particular viewpoint and
somewhat robust to small-scale changes in the scene. In this
way cameras are well suited to recognize places previously
visited.

Early work in visual teach-and-repeat navigation rec-
ognized the key benefit of such a system: an accurate
global reconstruction is not needed for a robot to re-
trace its path (Baumgartner & Skaar, 1994; Brooks, 1985).
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Systems implementing teach and repeat span the contin-
uum of map-based approaches, as categorized by Bonin-
Font, Ortiz, and Oliver (2008). Different systems frame
the problem as purely metric (Baumgartner & Skaar,
1994; Royer et al., 2007), combined topological/metric
(Goedemé, Nuttin, Tuytelaars, & Van Gool, 2007; Šegvić
et al. 2009), or purely topological (i.e., only track the po-
sition along the path) (Matsumoto, Inaba, & Inoue, 1996;
Zhang & Kleeman, 2009). Our system can be described as
topological/metric. Localization is performed in 3D space,
path tracking is performed in a local planar projected space,
and route management is topological.

Appearance-based systems compare large portions of
the input image with prototype images captured during the
teach pass. These algorithms are derived from the work of
Matsumoto et al. (1996). They developed a system for au-
tonomous navigation within corridors. During the route-
learning phase, an ordered sequence of images is cap-
tured using a monocular camera. During route repeating,
progress along the sequence is tracked. A template from the
center of each new image is correlated with the two nearest
images along the route. The steering angle is determined
from the correlation peak offset, and the current image in-
dex is incremented when the next image returns a higher
correlation score than the previous. Jones, Andresen, and
Crowley (1997) extend this basic framework and introduce
a second camera to more accurately track the position along
the route, and Payá, Reinoso, Gil, Pedrero, and Ballesta
(2007) try to make the process more efficient using princi-
pal component analysis. The most impressive demonstra-
tion of appearance-based path following was developed by
Zhang and Kleeman (2009). They report more than 18 km
of tests using an omnidirectional imaging system. Position
along the route and steering angle determination are simi-
lar to those of Matsumoto et al. (1996), but significant image
preprocessing is performed to make the system robust to
changing lighting conditions. All of the appearance-based
techniques rely on the assumption of planar camera mo-
tion. They are therefore not suitable for outdoor unstruc-
tured environments.

Another group of algorithms uses image features for
mapping and navigation but relies on the planarity of the
camera’s motion to reduce the complexity of the problem.
Ohno, Ohya, and Yuta (1996) use a monocular camera and a
bearing-only, two-dimensional localization when navigat-
ing between prototype images. Tang and Yuta (2001) de-
velop a similar system for a robot with an omnidirectional
camera. They use color information to describe line features
and planar localization based on the bearing of the line cor-
respondences. The algorithm described by Bekris, Argyros,
and Kavraki (2006) and Argyros, Bekris, Orphanoudakis,
and Kavraki (2005) tracks point features between omnidi-
rectional images. Instead of triangulating the features, they
use only the bearing of the measurements and develop a
control law to drive the robot between viewpoints. Jun,

Miura, and Shirai (2000) describe an algorithm that uses
range measurements from a stereo camera to detect obsta-
cles, which are projected down to a plane and used for lo-
calization while repeating the route. Blanc, Mezouar, and
Martinet (2005) developed a system that followed indoor
visual routes. As the camera was facing the ceiling, the sys-
tem could solve three-degree-of-freedom homographies us-
ing features tracked between exemplar images and images
taken from the robot’s current position. Courbon, Mezouar,
and Martinet (2008) extended this work to use an omni-
directional camera. Chen and Birchfield (2006) developed
a homing system that uses a KLT point tracker on images
captured from a forward-facing monocular camera system.
Stored points from the training run are matched with points
on the repeat run, and all matched points contribute to a
simple visual servoing scheme. Goedemé, Tuytelaars, and
Van Gool (2005) improve the process of extracting line fea-
tures by making every part of the algorithm invariant to
changes in illumination and viewpoint (assuming that the
camera is restricted to moving in the plane). They also
move to use point features detected using the scale invari-
ant feature transform (SIFT) (Lowe, 2004). During the map-
building phase, features are triangulated between views
and their 3D coordinates are stored in the map. Three-
dimensional localization against the map is performed by
observing features and estimating the essential matrix of
the camera. Owing to the introduction of local metric 3D in-
formation derived from point features, this algorithm, and
the similar one described by Booij, Terwijn, Zivkovic, and
Krose (2007), could be adapted to work with nonplanar
camera motion.

Developing a teach-and-repeat system for outdoor,
unstructured environments requires the handling of
nonplanar camera motions. Using point image features for
localization removes the planarity constraint and enables
localization in three dimensions as required by our system.
There has been some work in this area using forward-facing
monocular cameras. The work of Royer et al. (2007) repre-
sents one approach to this task. During the mapping phase,
point features detected in a monocular image sequence are
tracked between images, and data from the entire route
are subject to a large, multilevel estimation routine to find
the feature positions and the robot poses. The poses be-
come a reference path, and the features are used as a map.
To repeat the route, features in the current image are as-
sociated with features in the map and used to estimate the
rover’s position. In contrast to this global reconstruction ap-
proach, Šegvić et al. (2009) develop a system that performs
many local reconstructions during the mapping phase, us-
ing two-view geometry to triangulate feature points seen in
a monocular image sequence. During the repeat traverse,
the rover’s 3D pose is estimated using the triangulated fea-
tures. Interestingly, the 3D pose is used only to localize the
robot topologically; the steering angle is derived from a
simple visual servoing rule similar to that used by Chen
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Figure 2. An overview of the major processing blocks in our system.

and Birchfield (2006). These algorithms are most similar to
the one we propose. However, we use a stereo camera as
the main sensor.

A stereo camera provides metric structure within each
stereo pair of images, simplifying the reconstruction con-
siderably. A very simple teach-and-repeat mode was built
into the stereo navigation system described by Konolige,
Agrawal, Blas, Bolles, Gerkey, et al. (2009). During a map-
ping phase, the rover’s path is estimated using visual
odometry (VO) (Konolige, Agrawal, & Solà, 2007). To re-
peat the route, they estimate the rover’s position at the
start of the route by matching the current view with the
first image in the learning sequence. Then the route is re-
peated without relocalizing against the map. Although this
method worked for the short paths in question (generally
less than 200 m), longer routes would require localization
corrections to maintain global consistency.

We show that it is possible to use stereo vision alone
to retrace a long route with nonplanar camera motion in an
outdoor, unstructured environment. Our work is based on
VO (Konolige et al., 2007; Maimone, Johnson, Cheng,
Willson, & Matthies, 2006; Moravec, 1980; Nistér,
Naroditsky, & Bergen, 2004). Specifically, we start with
the vision pipeline common to all of these papers. This
involves tracking stereo features, using the random sample
consensus (RANSAC) algorithm to reject outlier feature
tracks, and using an iterative scheme to solve for the
rover’s pose. We transform the basic pipeline into a map-
ping and localization system and demonstrate that our
algorithm can be used to drive multikilometer autonomous
routes in a single command cycle.

3. SYSTEM OVERVIEW

This section will present a detailed description of our vi-
sual teach-and-repeat system. The major processing blocks
of our system are depicted in Figure 2. Both the teach-
ing and following systems are based on calibrated, par-
allel stereo vision, so fundamentals and notation will be
presented first. Next, the route-learning system will be de-

Figure 3. Coordinate frames under consideration.

scribed. Finally, we outline the route-following algorithm
and its handling of failures.

The coordinate frames used in our system are depicted
in Figure 3. The map frame F−→m is the frame in which all 3D
estimation occurs. We define F−→ck

to be a coordinate frame
attached to the left camera of a stereo pair at time k. The
attitude of the camera at this time may be described by
Cm,ck

, the rotation matrix that transforms vectors from F−→ck

to F−→m. Similarly, we define the camera’s position as ρ
ck,m
m ,

a vector from the origin of F−→m to the origin of F−→ck
(de-

noted by the superscript) and expressed in F−→m (denoted
by the subscript). Using similar notation, we define a ro-
tation, Cck,vk

, and translation, ρ
ck,vk
vk

, between the camera
frame, F−→ck

, and vehicle frame, F−→vk
. This transformation

is assumed to be static, but it could be time varying. Fi-
nally, the projection frame, F−→p , defines the projection from
three dimensions to two, as required by our path-tracking
controller.

3.1. Stereo Pipeline

To enable this project and others, we have developed
a sparse-stereo pipeline implemented entirely on the
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Figure 4. An overview of our GPU-accelerated stereo feature pipeline.

graphics processing unit (GPU) using NVIDIA’s Compute
Unified Device Architecture (CUDA) toolkit. As shown
in Figure 4, the pipeline is based on the speeded-up ro-
bust features (SURF) algorithm (Bay, Ess, Tuytelaars, &
Van Gool, 2008). As the camera is mounted on a rover that
cannot roll arbitrarily, we use the upright descriptor that is
not invariant to rotation.1

Adaptive thresholds are used to ensure constant
computational complexity and robust performance across
different scenes and lighting conditions. Each keypoint j

coming out of the stereo pipeline at time k has image coor-
dinates, yk,j , and a 64-dimensional description vector, dk,j .

When dealing with keypoints found in stereo image
pairs, we use disparity coordinates (Demirdjian & Darrell,
2002). Keypoint yk,j has the components

yk,j :=

⎡
⎢⎣

u

v

d

⎤
⎥⎦ .

The left camera is dominant in our formulation, so u and
v are, respectively, the horizontal and vertical pixel coordi-
nates in the left image, and d is the disparity—the difference
between the left and right horizontal pixel locations.

The calibrated, parallel stereo camera model has the
following parameters: cu, cv , the horizontal and vertical op-
tical center in pixels (from the top left of the image); fu, fv ,
the horizontal and vertical focal length in pixels; and b, the
camera baseline (i.e., distance between the two centers of
projection) in meters.

The observation model, h(·), is a nonlinear function
that projects points expressed in the left camera frame into
the disparity coordinates. Given a 3D feature location, pj,ck

ck
,

with its coordinates expressed in the left camera frame,

pj,ck
ck

=

⎡
⎢⎣

x

y

z

⎤
⎥⎦ ,

1Although we have used upright descriptors, the trajectory could
still be truly 3D (as it could be for a helicopter or underwater vehi-
cle) if the controller on the vehicle drove the robot back to the same
views. Upright descriptors do not limit the trajectory; they only
impede localization in the face of camera-frame roll error during
route repeating.

the image of that point, yk,j , is

yk,j = h
(
pj,ck

ck

) = 1
z

⎡
⎢⎣

fu 0 cu 0

0 fv cv 0

0 0 0 bfu

⎤
⎥⎦

⎡
⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎦ . (3)

Because we are using a calibrated stereo camera, Eq. (3) is
invertible. The inverse observation model, g(·), triangulates
points seen in a stereo pair:

pj,ck
ck

= g
(
yk,j

) = b

d

⎡
⎢⎢⎣

u − cu

fu

fv
(v − cv)

fu

⎤
⎥⎥⎦ (4)

3.2. A Generic Localization Module

Throughout this work, we use a generic localization mod-
ule based on the stereo VO algorithm pioneered by
Moravec (1980) and refined by Matthies (1989) and oth-
ers. The outline is shown in Figure 5. Stereo keypoints are
tracked against a feature database, the tracks are subject to
outlier detection, and the inlying tracks are used to solve
for the current pose of the camera. By substituting different
blocks for the feature database and numerical solution, we
are able to build all of the different operating modes used
for teach-and-repeat navigation: map building, VO, submap
selection, and localization. We will refer back to this section
as we specify the details used in these operating modes.
Here we present the specific requirements of each block.

A feature database represents a map against which the
robot can localize. To this end, it supplies information about
the set of features available for this task: N , the number
of features in the database; qi,m

m , the [xi yi zi ]T position of
feature i with respect to and expressed in F−→m; and vi , the
SURF descriptor associated with feature i.

Data association is performed by looking for nearest
neighbors in descriptor space. Using this notation and that
of Section 3.1, the output of the first block in Figure 5 is a
list of candidate feature tracks, each associating a feature i

in the database to a feature j from the most recent stereo
pair.

The candidate tracks are passed to the outlier detection
block. We have implemented preemptive RANSAC (Nistér,
2005), as it will on average produce the best set of inliers
given a fixed computational budget. Treating the feature

Journal of Field Robotics DOI 10.1002/rob



6 • Journal of Field Robotics—2010

Figure 5. An overview of our generic localization module.

database and the incoming stereo keypoints as 3D point
clouds [using Eq. (4) to triangulate each feature], we use
the three-point quaternion method of Horn (1987) as our
hypothesis generator. Preemptive RANSAC generates a set
of inlying feature tracks and a coarse estimate of the cam-
era’s pose in F−→m.

Finally, the inlying feature tracks are passed to a pose
solution method. The pose solution has access to the dis-
parity coordinates of each incoming keypoint, the feature
database, the pose estimate supplied by RANSAC, and the
camera’s pose from the last timestep. Using these data it
produces an estimate of the camera’s pose in F−→m: Cck,m,
the camera’s attitude with respect to F−→m; and ρ

ck,m
m , the

camera’s position with respect to and expressed in F−→m.
Each solution method is iterative, based on Gauss–Newton
minimization, but each operating mode uses a different
mathematical formulation.

3.3. Route Teaching

The basic process for route teaching involves driving the
path once while logging stereo images and then postpro-
cessing the image sequence into a series of overlapping
submaps. The postprocessing task is shown in Figure 6. At
the front, a mapping loop incrementally builds the map and
estimates the position of the rover within it. Periodically,
the map is split, and the raw data are further processed into
the format used in the repeat pass.

3.3.1. Teach Pass Localization and Mapping

The mapping loop seems to be solving the SLAM problem.
However, the different requirements of this system dic-

tate different design choices. Each submap must be locally
consistent, and transformations between adjacent submaps
must be reasonable. Outside of these constraints, the over-
all global consistency of the map sequence should not im-
pact algorithm performance. Because of this, the system
does not work toward global consistency. Figure 7 shows
an example of a 5-km map sequence compared to GPS to-
gether with the robot’s view of the map from either end.
Although the reconstruction of the complete path is very
inaccurate, locally it is sufficient to enable route following.

Submaps are constructed using a specialization of the
generic localization module from Section 3.2. The system is
initialized with the first keypoint list, {y0,j , d0,j }. The map
frame F−→m is defined to be the same as F−→c0 . All of the key-
points are triangulated using Eq. (4) and placed in the map.
In each subsequent frame, incoming keypoints are tracked
against the working database and subjected to outlier de-
tection. Let us use n to index the inlying feature tracks. Each
track associates feature i in the map to keypoint j . To esti-
mate Cck,m, and ρ

ck,m
m , we define the error term, en:

en := yk,j − h
[
Cck,m

(
qi,m

m − ρck,m
m

)]
.

Letting Mk be the number of feature tracks at time k, we
define our objective function, Jk , to be

Jk := 1
2

Mk∑
n=1

eT
n Wnen, (5)

where Wn is a weighting matrix based on the inverse of
the estimated measurement covariance of yk,j . We linearize
Eq. (5) and minimize Jk using the Gauss–Newton method.

When the percentage of features tracked drops be-
low a threshold, τf , the pose (Cck,m, ρ

ck,m
m ) is added to the

Figure 6. An overview of the mapping process.
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Figure 7. The visual reconstruction of a 5-km rover traverse plotted against GPS (top). Although the reconstruction is wildly
inaccurate at this scale, locally it is good enough to enable retracing of the route. The bottom images show views from either end
of the path, with the reference path plotted as a series of chevrons. To the rover, the map is locally Euclidean.

reference path, and all of the keypoints are added to the
map. Using a threshold avoids generating bloated maps
while the robot is sitting still and automatically adjusts the
number of features in the map based on the difficulty of the
terrain. Using the pose estimated in the preceding step, tri-
angulated keypoints are placed into the map in a common
frame, F−→m:

qi,m
m = CT

ck,m
g(yj,k) + ρck,m

m ,

= CT
ck,m

(
pj,ck

ck

) + ρck,m
m .

The prototype feature in our system is based on the tri-
angulated position and SURF descriptor of the first view

only. Incoming keypoints that are not successfully tracked
are added to the map as seen. Keypoints that are success-
fully tracked are already present in the map, and so the
new observations are discarded. Although there is enough
information here to estimate the camera’s pose and the fea-
ture positions—either on the entire map (Royer et al., 2007)
or on some sliding window of poses (Konolige et al., 2007;
Sibley, Matthies, & Sukhatme, 2008)—our system has no re-
quirement to build a globally consistent map. Furthermore,
our results show that this implementation works for the
kind of local, metric localization needed in the repeat pass.
Although future work may involve some evaluation of the
benefits of better reconstruction techniques, local bundle
adjustment is not necessary to build a working system.
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As poses and features are added to the map, the length
of the current reference path is tracked. When the length
exceeds a threshold, τl , the submap is packaged for the re-
peat pass and saved to disk. By changing this parameter,
our system scales smoothly between a complete global re-
construction (Royer et al., 2007) and view-sequenced route
representations that match against single images along the
path (Šegvić et al., 2009). We experimented with different
values for τl early in the development of the algorithm
and found that higher values (larger submaps) increased
the algorithm’s robustness to localization dropouts. How-
ever, this robustness came at the cost of increasing com-
putational complexity as larger submaps contained more
features. Eventually, we settled on the value τl = 5 m; this
was as high as we could set this value and still operate at
the frame rate necessary to drive the robot at a reasonable
speed to conduct long-range experiments.

The map-building step may fail if it is unable to suc-
ceed in tracking a minimum number of sparse feature
points from the map to the latest image. We have seen this
happen if the rover has moved too much between images,
with image motion blur experienced in low-light condi-
tions, and in areas with highly repetitive texture. The algo-
rithm tries to deal with single-frame failures by storing the
failed image and attempting to track features from the next
image. If this fails, the algorithm has no way to associate
the current images (and all future images) with the images
that have come before. To deal with this, it sets a flag that
the end of the current submap is broken, purges the exist-
ing map, and starts a new map as if it were processing the
first image of a sequence. The broken map flag is used as a
signal to the repeat pass that the algorithm should stop and
look for the next section of the map. This will be described
further below.

3.3.2. Teach Pass Map Packaging

When a split in the map is triggered, the current set of refer-
ence poses and features are packaged for use in the repeat
pass. First, the poses are subsampled to satisfy a minimum-
spacing constraint, τs . This smoothes the path and puts it
in a format suitable for our path tracker. All experiments
in this paper use τs = 0.5 m. Note that this step subsam-
ples only the poses used as the reference path; all features
remain in the map unless they were observed in only one
stereo pair. The frame-to-frame tracking process used to
build the map is the best possible condition for tracking
features; pose changes between images are small, and the
lighting is consistent. If a feature was unable to be tracked
in the teach pass, it is unlikely to be seen in the repeat pass.

The subsampled reference poses give the path of the
camera in F−→m, but our path tracker controls the position of
the vehicle, not the camera. We compute the vehicle posi-
tion using the rotation and translation between the camera
and vehicle frames: Cck,vk

and ρ
ck,vk
vk

. The reference path of

the vehicle, ρ
vk,m
m , is

ρvk,m
m := (

ρck,m
m − Cm,ck

Cck,vk
ρck,vk

vk

)
, (6)

and its attitude is

Cvk,m = CT
ck,vk

Cck,m. (7)

The projection from three dimensions to two is de-
fined by fitting a plane to the feature points in the cur-
rent submap. The subsampled features have each passed
the consistency test of outlier detection, and so they rep-
resent a reasonable, sparse reconstruction of the local area.
For each feature i, at position qi,m

m in the submap, we find
di , the minimum distance between the feature and one of
the vehicle reference poses:

di := min
k

∥∥ρvk,m
m − qi,m

m

∥∥.

From this distance, we compute a weight, wi , used in the
plane fitting:

wi =
⎧⎨
⎩

1
di + σp

if di ≤ τd

0 otherwise
. (8)

This weighting term is designed to ensure that the plane fit
captures the local ground plane directly along the path that
the rover has already traversed. The threshold, τd , ensures
that features outside of the vehicle corridor are not used
for the plane fit, and σp controls the rolloff of weights as
features approach the edge of the vehicle corridor. For all
experiments in this paper, we use σd = 0.01 and τd = 1.5.
We parameterize the plane by a unit vector, n, and offset, b,
such that any point x on the plane satisfies

nT x + b = 0.

From this equation, we define a weighted least-squares
problem to solve for n and b by minimizing Jp :

Jp = 1
2

N∑
i=1

wi

(
nT qi,m

m + b
)2 − 1

2
λ(nT n − 1), (9)

where N is the number of features in the submap and λ

is a Lagrange multiplier that ensures that n is a unit vec-
tor. Solving for the minimum of this equation results in the
eigenvalue problem

An� = −λn�,

where

A :=
N∑

i=1

wi

(
qi,m

m

)(
qi,m

m

)T − 1
W

(
N∑

i=1

wiqi,m
m

)(
N∑

i=1

wiqi,m
m

)T

,

W :=
N∑

i=1

wi,

and n�, the unit vector that minimizes Jp , is the eigenvec-
tor of A corresponding to its minimum eigenvalue. Figure 8
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Figure 8. Side view of a submap showing the camera frames, F−→ck
, the vehicle frames, F−→vk

, the sparse feature points, and the
ground plane fit to the features.

illustrates this process, showing the camera and vehicle
poses, the weighted sparse feature points, and the result-
ing plane fit.

The unit vector n� is the normal of the xy plane of the
projection frame, F−→p , expressed in F−→m. We now calculate
the rotation, Cm,p , that transforms vectors from F−→p to F−→m.
Using the shorthand ca := cos(a) and sb := sin(b), the rota-
tion Cm,p may be parameterized by Euler angles, (α, β, γ ),
such that

Cm,p =

⎡
⎢⎣

cαcβ sαcβ −sβ

cαsβsγ − sαcγ −sαsβsγ + cαcγ cβsγ

cαsβcγ + sαcγ −sαsβcγ − cαsγ cβcγ

⎤
⎥⎦ . (10)

We know that n� expressed in F−→p is [0 0 1]T , which leads
to the following constraint:

n� = Cm,p

⎡
⎢⎣0

0
1

⎤
⎥⎦ =

⎡
⎢⎣

−sβ

cβsγ

cβcγ

⎤
⎥⎦ .

Defining the components of n� =: [n1 n2 n3]T , we can
solve for β and γ :

β = asin(−n1), (11)

γ = atan2(cβn2, cβn3). (12)

The last Euler angle, α, is ambiguous (the plane nor-
mal is only a two-degree-of-freedom constraint), so we in-
troduce a final constraint that the x axis of F−→v0 lies in the xz

plane of F−→p . Using Cm,p and the vehicle path from Eqs. (6)
and (7), we can transform the reference path to the projec-
tion frame:

ρvk,v0
m = ρvk,m

m + Cc0,v0ρ
c0,v0
v0

, (13)

ρvk,v0
p = CT

m,pρvk,v0
m , (14)

Cvk,p = Cvk,mCm,p. (15)

Finally, we compute a scalar difficulty score for the submap.
During the repeat pass, the difficulty level is used to choose

the robot’s repeat speed to use on a given map. We compute
a measure of curvature of the reference path as it captures
two common forms of path difficulty: (1) tight turns and
(2) rough terrain. To this end, we compute the incremental
attitude changes of the camera, δCk :

δCk = Cck−1,mCT
ck,m

.

This attitude change is decomposed into an axis of rotation,
âk , and an angle of rotation, ωk . The difficulty, h, is then
computed as the root-mean-square attitude change:

h =
√√√√ 1

M

M∑
k=1

ω2
k, (16)

where M is the number of reference poses.
When building reference trajectories with a fixed

length and a fixed spacing of reference poses, M is very con-
sistent across submaps. Furthermore, over these very short
distances, the relative pose estimates are very accurate. Be-
cause of this, the values of h from Eq. (16) are comparable
between submaps. The dependence of driving speed on ter-
rain difficulty must be tuned for each vehicle/application
combination. Table I lists the speed schedule used for all
experiments in this paper.

Table I. Driving speed used as a function of the difficulty
(RMS attitude change).

Difficulty range (deg) Speed (m/s)

h < 1.0 1.00
1.0 ≤ h < 2.0 0.75
3.5 ≤ h < 8.5 0.50
8.5 ≤ h 0.35

The driving-speed schedule for a deployment of this algorithm
would have to be tuned for each vehicle/application combination.
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Figure 9. A view of six overlapping submaps with the reference path plotted above.

At this point, the submap is saved to disk with the fol-
lowing information:

– a vehicle reference path with L poses (indexed by �),
{ρ�,p

p }, expressed in F−→p , calculated from Eqs. (6), (13),
and (14)

– a rotation Cp,m that defines the projection to a local
ground plane, calculated from Eqs. (11), (12), and (10)

– a set of N features (indexed by i), {qi,m
m , vi}, expressed in

F−→m

– a scalar difficulty score, h, computed from Eq. (16)
– flags that indicate whether the beginning or end of the

map is broken

This satisfies the requirements needed to be used as a fea-
ture database in the generic localization module described
in Section 3.2.

Each submap is between 500 KB and 2 MB, depending
on the number of features tracked (which is scene depen-
dent). This size includes extra data that are used solely for
algorithm evaluation and not to repeat the route. Averaged
over all teach passes, this amounts to 348 MB per kilometer.
The teach pass processes an image approximately every
0.2 m, 5,000 images per kilometer. An appearance-based
approach using the rectified stereo images would occupy
2.9 GB per kilometer, and saving all of the keypoints and
descriptors would take up 1.3 GB per kilometer (assum-
ing 500 stereo keypoints per frame). By aggregating data,
our system offers an order-of-magnitude savings in storage
over a pure appearance-based approach.

After saving the submap to disk, older poses and fea-
tures are removed from the database in memory. We build
the submaps to overlap by 50% as this ensures data over-
lap during transitions (Marshall et al., 2008). Poses are re-
moved from the reference path until it is half of the length

saved to disk. Any feature not seen by the remaining poses
is then removed from the feature database. After this step,
the mapping loop continues, processing new keypoint lists,
localizing against the feature database, and adding features
to the map, until another split is triggered or the image
sequence ends. Figure 9 shows a short section of a map
database, the ground plane of each submap, and the ref-
erence path. When the teach pass is complete, a database of
maps is available for use in the repeat pass.

3.4. Route Repeating

During the repeat pass, the robot uses the database of
submaps to repeat the route. The system we have imple-
mented can start at any place along the path and repeat the
route in either direction, provided that the camera is fac-
ing the same direction it was facing during the teach pass.
Neither direction switching during path following nor lo-
cal obstacle detection has been implemented, although both
should be possible (Marshall et al., 2008). This section will
describe the route-following algorithm in detail: localiza-
tion, route management, and failure handling.

3.4.1. Repeat Pass Localization

Three specializations of the generic localization module are
used during the repeat pass: submap selection, localization,
and VO.

Submap selection is performed at the start of a route
or when the robot is lost. One of the submaps built in the
teach pass is loaded into memory and used as a feature
database. Features are tracked and subjected to outlier de-
tection. If there are enough inlying feature tracks (nine for
all experiments in this paper), the objective function used
in the route-teaching phase (5) is used to solve for the pose
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of the camera. If this process is successful, the rover begins
to repeat the route, interleaving localization and VO as the
route is retraced.

The interleaving of localization and VO during the re-
peat pass is one of the key strategies that makes this system
robust to lighting changes, scene changes, and occlusions.
Our first iteration of this project used a formulation simi-
lar to that of Royer et al. (2007) or Šegvić et al. (2009)—all
estimation of the robot’s position was based on localization
against the map, and no form of dead reckoning was used.
This worked well on pavement and in urban environments,
but when we tested our system on grass and rough terrain,
the system failed too easily under changing lighting condi-
tions. Realizing that our localization module was based on
VO (a purely relative motion estimation method), we im-
plemented a system that would switch back and forth be-
tween VO and localization. VO is accurate enough to keep
the rover near the path through difficult areas, and periodic
localization maintains the global (topological) accuracy that
allows long routes to be repeated. This is similar to the
method used by Zhang and Kleeman (2009), who use wheel
odometry between their global corrections. We process VO
every frame, but given our current hardware, there are not
enough computational resources to also perform localiza-
tion every frame. Hence, we introduce an integer parameter
G and attempt localization only when mod(k,G) = 0 (every
Gth frame). In these experiments we have used G = 3. We
use the frame-to-frame VO method described by Maimone,
Cheng, and Matthies (2007).

Localization is similar to submap selection, but our
prior knowledge of the rover’s position (from VO) allows
us to improve on the position estimate. Using only the
process described for submap selection, our system would
periodically localize only using distant features. In these
cases, the orientation was estimated quite well, but the po-
sition of the rover would experience huge jumps. Similar
behavior is described by Diosi, Remazeilles, Segvic, and
Chaumette (2007). To account for this, a prior information
term is added to the error term used to estimate the pose.
Let Jvis be the error term from Eq. (5). We add prior infor-
mation error terms for the position, Jpos, and attitude, Jatt,
so that the error term we minimize, J , is

J = Jvis + Jpos + Jatt. (17)

Let ρ̂
ck,m
m and Ĉck,m be the position and attitude estimated

by VO, and let ρ
ck,m
m and Cck,m be the position and attitude

we are estimating. In this notation,

Jpos := 1
2

(
ρ̂ck,m

m − ρck,m
m

)T Wpos
(
ρ̂ck,m

m − ρck,m
m

)
.

Expressing Ĉck,m and Cck,m as yaw–pitch–roll Euler-angle
vectors, α̂k and αk , respectively, results in a similar error
term for attitude:

Jatt := 1
2

(α̂k − αk)T Watt (α̂k − αk) .

The weighting matrices were chosen to be

Wpos := 1
σ 2

pos
1, Watt := 1

σ 2
att

1, (18)

where 1 is the identity matrix. All experiments in this work
use σpos = 1.0 and σatt = 0.1, which results in a very weak
prior. Finally, Eq. (17) is linearized and solved using the
Gauss–Newton method.

The output of the localization block is an esti-
mate of the camera’s position, ρ

ck,m
m , and attitude, Cck,m.

Equations (6), (13), and (14) are then used to produce ρ
vk,p
p ,

the position of the vehicle in the projection frame. The at-
titude of the vehicle in the projection frame, Cp,vk

is com-
puted using Eq. (15), then decomposed into a yaw–pitch–
roll Euler-angle sequence. The yaw value of this sequence
is the vehicle’s heading in the projection frame, θk . Defin-
ing the components, ρ

vk,p
p =: [xk yk zk]T , we can express

the two-dimensional robot pose, �k :

�k =

⎡
⎢⎣

xk

yk

θk

⎤
⎥⎦ . (19)

This planar pose of the robot and the projected reference
path are passed to a unicycle-model version of the planar
path-tracking algorithm described by Marshall et al. (2008).

3.4.2. Repeat Pass Route Management

The localization module feeds into a route management
system that triggers map handoffs, schedules the robot’s
speed based on the path difficulty, and monitors the route-
following system for errors. The route manager tracks the
closest point on the current reference path. When the vehi-
cle reaches the middle of a reference path, a map handoff is
triggered. This involves the following steps:

– loading the next submap from disk
– updating the feature database used for localization
– updating the reference path used by the path tracker
– updating the transformation from F−→m to F−→p

– setting the robot’s speed based on the submap difficulty

3.4.3. Repeat Pass Failure Handling

Route-following failures are detected by monitoring the
distance traveled since the last successful localization.
When this distance reaches a threshold, τg , the rover stops
and the system attempts to recover from the failure. To re-
cover, the system signals the operator that there has been
a failure and then searches nearby (topologically) submaps
using the submap selection mode to perform wide-baseline
matching. If this reinitialization is successful, the rover con-
tinues the route. During the search phase, an operator may
also reposition the rover on the path (using images from
the teach pass images to identify the correct position). Any
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Table II. The major parameters of our teach-and-repeat algorithm, a description of their functions, and the intuition behind the
choice of value.

Parameter Value Description

τf 45% (Section 3.3.1) The current set of features is added to the map when the percentage of features tracked
from the preceding frame drops below τf . Using this threshold avoids generating bloated maps
when the robot is sitting still and automatically adjusts the number of features per map based on the
difficulty of feature tracking on specific terrain.

τl 5 m (Section 3.3.1) The length of the reference path for each submap. Larger values increase the
computational complexity of searching the map for feature correspondences. Smaller values make
the system more prone to failure in the face of localization errors.

τs 0.5 m (Section 3.3.2) The spacing of poses in the reference path. This controls the fidelity of the path used by
the path tracker and the fidelity of the difficulty metric (16).

τd 1.5 m (Section 3.3.2) Controls the width of the vehicle corridor used to build the local ground plane for each
submap in Eq. (8). This was tuned for the width of the vehicle.

σp 0.01 (Section 3.3.2) Controls the weighting rolloff as features approach the edge of the vehicle corridor in
the plane fit (8). Larger values weight features near the edge of the corridor more. This parameter
must be tuned for the expected clutter of the environment.

G 3 (Section 3.4.1) During the repeat pass, localization is processed every G frames (VO is processed every
frame). This value would be 1 if possible, causing localization every frame. Higher values reduce the
computational complexity of the algorithm.

{σpos, σatt} {1.0, 0.1} (Section 3.4.1) These terms determine how much to rely on the prior pose estimate (from VO) during
localization (18). The values chosen result in a weak prior that significantly changes the solution
only when localization against the map is uncertain (e.g., when localizing with a small number of
distant features).

τg 50 m (Section 3.4.3) The distance to travel without successful localization before stopping, signaling the
operator, and searching nearby submaps in an attempt to relocalize. This is based on the estimated
accuracy of our VO implementation.

failures or repositioning of the rover will be noted in our
experiments below.

When the algorithm encounters a break in the map
as described in Section 3.3.1, the system drives to the end
of the current submap, stops, loads the next submap into
memory, and attempts to localize. If this is successful, the
algorithm restarts the rover and continues repeating the
route. If this fails, the rover will signal the operator for in-
tervention. The algorithm will then start searching nearby
maps (topologically) until submap selection is successful.
The operator can then choose to reposition the rover or
command it to continue using VO.

3.5. Parameter Choices

As in many robotics applications, a number of parameters
must be tuned for each deployment. The parameters of our
teach-and-repeat system were tuned during algorithm de-
velopment and then fixed for the experiments reported in
this paper. Throughout the algorithm description above, we
have tried to elaborate on the intuition behind each of our
parameter choices. For clarity, we summarize the main al-
gorithm parameters in Table II, along with a description of
their functions and some notes about the intuition used to
select the parameter value.

3.6. Hardware

The experiments described in this paper were performed
using the six-wheeled articulated rover shown in Figure 10.
Motor control on the rover was performed by a pair of
microcontrollers. Vehicle-level motion commands and path

Figure 10. The six-wheeled rover platform used in these ex-
periments was outfitted with a stereo camera, an onboard PC
to run the teach-and-repeat algorithm, an embedded PC to pro-
cess path tracking, an RTK GPS for benchmarking localization
performance, and a 1,000-W gas generator to provide power
during multiple-kilometer traverses.
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tracking were handled by a single embedded PC with a
1.2-GHz Pentium 4 processor and 1 GB of ram. The base
was powered by three lithium-ion battery packs, but in or-
der to perform the long-range experiments in this paper,
the onboard power supply was augmented with a Honda
1,000-W generator, which supplied power to the base and
all of the onboard computers. The computer running the lo-
calization and route management was a MacBook Pro with
a 2.4-GHz Intel Core 2 Duo processor, 4 GB of RAM, and
an NVIDIA GeForce 8600M GT graphics card capable of
supporting CUDA 1.1. The stereo camera was a Point Grey
Research Bumblebee XB3 with a 24-cm baseline and 70-deg
field of view, mounted approximately 1 m above the surface
pointing downward by approximately 20 deg. Each image
of the stereo pair was captured at 640 × 480 pixel resolu-
tion. When possible, we used a pair of Thales DG-16 real-
time kinematic (RTK) GPS units for ground-truth evalua-
tion. These units are rated at 0.4-m circular error probable
(50% of the data should be within a circular area of this ra-
dius around the true value). Unfortunately, our radio link
was not robust to occlusions; for long routes and near build-
ings, it was not possible to receive the real-time corrections,
and only regular GPS was available. The rover was able
to track a path while driving forward or backward. This
allowed us to repeat routes in either direction by keeping
the camera facing the same direction as it was during route
learning.

4. FIELD TESTING

We conducted a number of field trials to test the capa-
bilities of the full teach-and-repeat system and character-
ize the performance of the localization system. This sec-
tion will summarize the results of our route-following tests.
Our preliminary tests were performed at the University
of Toronto Institute for Aerospace Studies (UTIAS). Be-
cause of the applicability of our algorithm to planetary
exploration, we conducted trials at the Haughton-Mars
Project Research Station (HMP-RS) on Devon Island in the
Canadian High Arctic (Lee, Braham, Boucher, Schutt, Glass,
et al., 2007). The HMP-RS is located within a polar desert,
which offers an unusually wide variety of geological fea-
tures of strong planetary-analog value. Because of this,
it has been used for rover testing in the past (Fong,
Deans, Lee, & Bualat, 2007; Fong, Allan, Bouyssounouse,
Bualat, Deans, et al., 2008; Wettergreen, Dias, Shamah, Teza,
Tompkins, et al., 2002; Wettergreen, Tompkins, Urmson,
Wagner, & Whittaker, 2005). Additionally, the lack of veg-
etation, low angle of the sun in the sky, and wide range of
terrain types make it an ideal site for testing of vision-based
algorithms for planetary exploration.

4.1. Route Following

Our teach-and-repeat system has been tested on 27 routes
and more than 32 km of autonomous driving. Results re-

dh-07-20-3152 
             Length of route (m) 
||   |   |  -Day 
||   |   ----Month 
|------------Teach method: human (h), autonomous (a)
-------------Location: Devon Island (d), UTIAS (u)

Figure 11. The naming convention used for teach passes.

ported in this paper are for the algorithm described in
Section 3. Earlier route-following results during the algo-
rithm’s development are not included. All tests described
here were performed using the same code and parame-
ters. Individual teach passes are named according to the
convention shown in Figure 11. Experiments performed
at UTIAS are marked with a u, and those from Devon
Island are marked with a d. We used two methods to
teach routes. The h tag indicates that the rover was pi-
loted by a human, and the a tag indicates that the rover
was driving autonomously. The autonomous teach passes
were recorded during trials of a terrain assessment and
path-planning algorithm. When the terrain assessment al-
gorithm signaled that its run was complete, the route was
taught from logged images, and the rover autonomously
returned along its path. Some routes were taught with the
camera facing forward, and others with the camera fac-
ing backward (as required by other concurrently running
experiments). However, during route repeating, the rover
drove forward or backward as necessary to keep the camera
pointed in the same direction as it was during route learn-
ing. Complete statistics for all teach-and-repeat passes are
given in Appendix B, but the overall results will be summa-
rized here.

Learned routes ranged in length from 47 m to nearly
5 km. Of the 27 teach passes, 21 successfully built maps
without failure. The teach pass failures will be discussed
in greater detail in Section 5.5. The difficulty of the routes
was assessed using an inclinometer to measure the vehicle-
frame pitch and roll and GPS to measure the relative ele-
vation change. During the most extreme routes, the rover
experienced up to 118.5 m of elevation change, as well as
pitch and roll deviation from vertical of up to 28 and 22 deg,
respectively.

The 27 teach passes were used to perform 60 repeat
passes. Only four of the routes required manual interven-
tions. Four repeat passes were not completed to the end.
The repeat pass failures will be discussed in greater de-
tail in Section 5.6. The longest autonomous repeat pass was
3.2 km (dh-07-23-4963). There were 2 autonomous runs of
approximately 2 km (dh-07-20-2120) and 10 autonomous
runs approximately 1 km long (uh-05-20-1152, uh-05-21-
1170, and dh-07-22-1091). Of the 32.919 km traveled, only
0.128 km was piloted manually. This is an autonomy rate of
99.6%. In all cases in which the rover needed an interven-
tion, it stopped along the path and signaled the operator.
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4.2. Route with Large 3D Motion and Extreme
Lighting Changes

To test the operational limits of our algorithm, we built
a route at UTIAS where the rover experienced large 3D
motion and extreme lighting changes. Figure 12 shows an
overhead view of the route, the vehicle-frame pitch and
roll (as measured by an inclinometer), and some represen-
tative views from the left camera. The rover started inside
our indoor test facility on a raised platform. It descended a
slope, climbed two hills, ascended a ramp, and then drove
through a narrow corridor leading outdoors. There, it tra-
versed an obstacle course, crossed a road, and finished
the route by parking in our laboratory. The platform ex-
perienced pitch and roll up to 27 deg and moved from
an indoor, low-light environment to outdoors. Multimedia
Extension 1 (Appendix A) is a video of the rover repeating
this route.

We taught this route twice, once during development
of the obstacles (uh-07-22-0120), and once after they were
complete (uh-07-23-0120). The routes were repeated seven
and five times, respectively. Every repeat pass was suc-
cessful, despite the 3D motion of the camera. Figure 13
shows the teach pass corridor (the track of the teach pass
laterally extended ±2 m for illustration) with the tracks
of the seven repeat passes overlaid. The background is
shaded (blue) behind sections of the route where the al-
gorithm experienced localization dropouts. Steep hills in
the indoor section caused localization and VO failures due
to significant motion blur. At the end of the route, com-
puters and chairs were moved around, changing the ap-
pearance of the scene significantly. The experiment high-
lights the interplay of localization and VO. Where VO
fails, localization corrects the error and keeps the rover
on the correct path. Where localization fails, VO is ac-
curate enough to carry the rover through to a place it
recognizes.

This experiment was performed before our field trials
on Devon Island to prove that the teach-and-repeat system
would work on 3D terrain. During our field trials we tested
the algorithm over many 3D routes (see the list of the most
extreme routes in Table III). In all cases, 3D motion of the
camera was not a limiting factor for route following.

5. EVALUATION

In this section we offer some evaluation of our algorithm
to try to describe why it works and what its strengths and
shortcomings are. We examine the convergence properties
of the localization algorithm and the properties of the algo-
rithm under changing lighting conditions. We compare the
estimated lateral path-tracking error to that measured by
GPS and look at which features are used for localization.
Finally, we examine the failure modes experienced by the
algorithm.

5.1. Convergence Properties

To test the convergence properties of the localization al-
gorithm, we taught a single map on characteristic terrain
(from the Devon Island experiments) using a camera on
a tripod. After processing the teach pass, the camera was
placed in a nominal position in the middle of the map, set
to process localization, and perturbed from this nominal
position until the localization failed. Perturbations were in-
troduced four ways: as lateral displacements from the path
center (0.1-m increments) and along vehicle-frame yaw,
pitch, and roll axes (5-deg increments). At each increment,
200 localizations were processed.

Figure 14 shows the mean inlying feature count for lat-
eral and angular deviations. The curves end when the lo-
calization algorithm fails. This experiment shows that the
feature count decreases rapidly from the camera’s nomi-
nal placement. Any curve of this type will be scene depen-
dent, and we believe that the slower drop in feature count
with positive lateral displacement may be due to prominent
rocks to the right of the path. The experiment shows that lo-
calization is possible with up to ±1-m lateral displacement
from the path and over ±20-deg angular deviation in all of
yaw, pitch, and roll.

5.2. Lighting Dependence

We also designed an experiment to show the properties of
our algorithm under changing lighting. The SURF feature
description algorithm accounts for contrast changes by nor-
malizing the description vector. However, in our experi-
ence, descriptor-based matching is very difficult under ex-
treme lighting changes. To illustrate this, we taught a short
route and set up a camera to capture an image and perform
localization every 30 s. The inlying feature count is plotted
against time passed in Figure 15.

Ten hours after the teach pass, the localization mod-
ule fails to find enough inlying features. This confirms the
lighting dependence that we have seen in our experiments.
Strong lighting with a low angle of incidence is particularly
problematic in this regard. Similarly, routes taught on over-
cast days and repeated on sunny days (or the other way
around) cause problems. On overcast days, SURF’s blob de-
tector finds points based mainly on surface albedo, whereas
during periods of strong lighting, shadowing creates areas
of intensified image contrast based on scene structure. Dif-
ferent sets of point features are returned in each case.

5.3. Localization Performance during
Path Following

This section will characterize the performance of our lo-
calization system during path following. Although the
reconstruction of the route may not be globally consis-
tent, each small section of the path should have a small

Journal of Field Robotics DOI 10.1002/rob



Furgale & Barfoot: Visual Teach and Repeat for Long-Range Rover Autonomy • 15

0 50 100 150 200 250 300 350 400 450 500
40

30

20

10

0

10

20

30

time (s)

a
n
g
le

 (
d
e
g
re

e
s)

Roll
Pitch

Figure 12. Top to bottom: An overhead view of the route built to test nonplanar camera motion and extreme lighting changes (uh-
07-22-0120, uh-07-23-0120), the pitch and roll of the rover during the teach pass of route uh-07-22-0120, and short image sequences
(left camera) from one repeat run of the route. The path, plotted as chevrons, confirms that localization is indeed performed in
three dimensions.
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Figure 13. The seven repeat passes of route uh-07-22-0120 with the reference path from the teach pass extended laterally ±2 m.
Localization dropouts, highlighted in blue, occurred mainly due to scene changes and motion blur.

reconstruction error. Because of this, we may compare the
lateral path-tracking error estimated by the localization al-
gorithm to that measured by GPS. Our GPS unit required
line of sight between the base station and the rover to send
the real-time corrections, and so we do not have RTK–GPS
data for all routes. Figure 16 shows the lateral path-tracking
error estimated by localization and measured by GPS over
a 450-m-long segment of route da-07-29-0486. This segment
of the route had RTK GPS for both the teach pass and the
repeat pass. A shaded background highlights the portions
of the repeat pass where localization has failed.

These figures show two important characteristics of
our algorithm. First, when localization is successful, the
estimated lateral path-tracking error has good agreement
with the same quantity measured by GPS. When localized,
none of the differences is larger than 0.2 m, agreement well
within what we can discern with this GPS. Second, it shows
that, when the algorithm is unable to globally localize, the
estimate may diverge and then reconverge when localiza-
tion is recovered. This is shown on Figure 16 at around
360 m traveled, where the localization drops out for nearly
15 m. The speed of divergence is a function of the accuracy
of our VO algorithm. We have seen the algorithm recover
from lateral path-tracking errors of 1.5 m and localization
dropouts of up to 40 m. In each case, successful localiza-

tion pulls the estimate back toward global consistency and
allows our algorithm to faithfully repeat long routes.

5.4. Keypoint and Feature Usage

This section tries to shed some light on which keypoints
and features are used by the algorithm to perform localiza-
tion. To this end, we used data collected during the nine
repeat passes of route uh-05-26-0202. This route was taught
midday when it was overcast, and the first seven repeats
were performed on a sunny day, every hour starting at
7:45 a.m. After the sixth repeat, cloud cover moved in and
the additional runs were performed on a different day. The
large number of repeats and varying lighting conditions
make this route a good candidate for an examination of fea-
ture usage.

Figure 17(a) shows a histogram of track length (num-
ber of observations) for the 132,781 features stored in the
map. The figure shows that maps are predominantly pop-
ulated by features seen in only two images. From there, the
track length decreases quite steeply but a small number of
features are still seen many more times. The long tail of
this curve has been truncated. The longest track length was
102 frames.

Table III. Difficulty metrics for the teach passes where the rover experienced the most extreme 3D camera motion.

Tag Elevation change Min roll Max roll Min pitch Max pitch

uh-05-20-1152 4.9 −18.4 8.2 −12.0 6.3
uh-05-21-1170 4.9 −17.8 11.9 −14.6 10.3
uh-05-22-0120 3.6 −14.7 11.7 −21.5 27.2
uh-07-23-0120 4.9 −13.3 12.1 −18.5 26.5
dh-07-20-2120 69.2 −22.0 15.9 −28.3 16.9
dh-07-23-4963 118.5 −12.8 13.6 −15.5 12.0
dh-07-30-0347 2.1 −12.2 13.1 −12.1 10.8
dh-07-31-0192 1.1 −9.8 10.9 −17.9 19.1
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Figure 14. Average feature count of the localization algorithm (black, solid line with 1σ bounds) as the camera was displaced lat-
erally from the path, or rotated in place. Each data point is averaged over 200 trials. Angular perturbations were made along
the vehicle-frame yaw, pitch, and roll axes. The dotted curve shows the percentage of the image covered by the features in
the map. Whereas the feature count is correlated to coverage, changes in viewpoint also reduce the ability of the system to as-
sociate features.
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Figure 15. Results of testing the localization algorithm performance under changing lighting. Owing to time constraints during
our field campaign, we were able to perform only a single trial. However, the result here fits very well with the results of our
path-following experiments; the SURF feature matching is not robust to extreme lighting changes.
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Figure 16. Top to bottom: Lateral path-tracking error during a repeat pass as estimated by the localization algorithm and mea-
sured by RTK GPS, the difference between these curves, and the track of the rover during this segment. The blue shaded back-
ground highlights areas where the localization step failed. When localization is successful, the pose estimate agrees well with
GPS.

During the repeat pass, we logged which features were
used for localization. Figure 17(b) shows the relationship of
the track length during the teach pass to feature use during
the repeat pass. Plotting the mean over all samples shows a
strong linear relationship with slope 1. This confirms what
intuition would suggest: that unique features seen for a
long time during route learning are easily found during
route repeating.

To determine which features contribute most to local-
ization, we plotted the feature observations in image space.
Figure 18(a) shows a clustering of features around the top

of the image. When compared to a typical image from this
route shown in Figure 18(b), it clearly shows that the major-
ity of features used during the repeat pass are distant from
the camera—horizon features. Horizon features are good
for correcting for rover orientation but, as stereo-based
range accuracy decreases with distance from the camera,
they are not great for estimating the rover position. In this
sense, our algorithm works a lot like VO with globally con-
sistent orientation updates. This also suggests a way for-
ward for future work; it may be possible to reduce the
submap size by using only features that have been tracked
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Figure 17. Histogram of feature track length for the 132,781 features tracked in the teach pass (a). The mean observation count
during route repeating for each track length is shown in (b). Feature track length during route learning correlates strongly with the
observation count during route repeating.

for multiple frames. This would reduce the computational
complexity of finding feature correspondences in the map
and enable localization to be performed more often. How-
ever, using only distant features would most likely require
more accurate feature position and covariance estimates,
suggesting the use of a multiframe reconstruction method
during the teach pass. Alternately, the two-stage estimation
algorithm described by Kaess, Ni, and Dellaert (2009) could

be used to decouple the orientation and position estimation
problems.

5.5. Teach Pass Failures

All of the teach pass failures listed in Table IV were due to
large displacement of the camera between images. Some-
times a processing backup would cause our data-logging

Figure 18. A plot of (a) the image locations of 240,534 feature observations from nine repeat passes and (b) a typical image from
this sequence. The features used for localization cluster in a band at the horizon.
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Figure 19. All teach pass failures were the result of large interimage spacing due to data logging dropouts. This figure shows two
consecutive images from uh-07-23-4963 that caused a failure.

Table IV. Teach passes with failures.

Features
Tag Length (m) Maps per map Failures

ua-06-04-0097 96.8 35 1,581 3
ua-06-06-0186 185.8 65 1,975 1
dh-07-20-2120 2,120.0 740 3,680 1
da-07-20-0464 464.0 166 1,662 1
da-07-21-0453 453.5 161 1,960 1
dh-07-23-4963 4,962.5 1,732 3,993 5

system to drop images. This was not a problem on many
types of terrain, especially where there were strong horizon
features or large objects out of the ground plane. However,
on flat, repetitive terrain such as that seen in a long section
of uh-07-23-4963, even short dropouts caused teaching fail-
ures. This is illustrated in Figure 19, which shows a pair of
consecutive images from this route that caused a failure.

Three of the five routes with teach pass failures re-
quired no operator intervention. The rover simply drove to
the end of the broken map, loaded the next map, relocal-
ized, and continued.

5.6. Repeat Pass Failures

Table V lists all of the repeat pass failures and incomplete
routes. Repeat pass failures had two distinct causes. The
first was integration with an autonomous terrain assess-
ment and path-planning algorithm, and the second was
changing scene appearance.

The route-learning algorithm described in this paper
had no problem learning an image sequence with direc-
tion switches, but paths that doubled back on themselves
were not amenable to our path-tracking algorithm. Early
in development, we decided not to implement direction
switches. However, the autonomous terrain assessment
and path-planning algorithm used to build some of the

routes sometimes backed up along its own path to get out
of a cul-de-sac. When faced with a knot in the path, the path
tracker would command the robot to perform a wide U-
turn, ending up 180 deg to the desired orientation on the
path. To deal with this, we developed a preprocessing step
that used the motion estimate from the terrain assessment
run to automatically identify path knots and remove the
images making up those knots from the sequence. We de-
veloped this preprocessing step during some tests at the be-
ginning of June 2009 (ua-06-04-∗ and ua-06-06-∗). Failures
during this time informed this development process, and
the knot-removal step worked without fail after that.

Other failures during repeat passes were due to the
changing appearance of the scene, mostly because of
changing lighting conditions. We encountered several sit-
uations in which a route required manual interventions
(uh-05-21-1170) or failed to complete (dh-07-30-0187) at one
time of day but was autonomously repeated successfully
when the lighting changed. These results agree well with
the lighting test in Section 5.2. Route uh-05-21-1170, taught
at midday in direct sunlight, was repeated six times and
had trouble only late in the evening or early in the morn-
ing. Route dh-07-30-0187 was in an area made up entirely
of fist-sized rocks.2 The complex shadows created by these
rocks were difficult for our algorithm under time changes.
Figure 20 shows an image from the teach pass of this route
along with images from the failed and successful repeat
passes.

Flat areas with repetitive texture were particularly dif-
ficult under changing lighting conditions. The section of
route uh-07-23-4963 already shown in Figure 19 was taught
when it was partly cloudy with some periods of strong
direct sunlight, and both repeat passes were attempted
when it was overcast. The first repeat pass was attempted
forward along the route, and the second was attempted

2A video of the rover repeating route dh-07-31-0192 at the same site
is available as Multimedia Extension 2 (Appendix A).
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Table V. Repeat passes with failures.

Teach pass Repeat pass Operator Globally
Teach pass tag start time start time Completed (%) Autonomous (%) interventions localized (%)

uh-05-21-1170 12:16:02 20:26:28 100.0 92.0 1 49.6
08:03:44 100.0 98.4 3 45.0

ua-06-04-0097 14:48:50 15:10:59 87.4 95.5 2 93.4
ua-06-06-0186 13:11:57 13:55:08 100.0 98.4 1 81.5
dh-07-23-4963 08:50:49 08:49:24 64.9 100.0 0 96.3

15:07:49 32.8 100.0 0 76.2
dh-07-30-0187 14:35:09 18:37:18 78.4 100.0 0 9.9

(a) An image from the start of the teach

      pass

(b) An image from the failed repeat pass

      started 4h later

(c) An image from the successful repeat

      pass started the next morning

Figure 20. Images from the start of route dh-07-30-0187 that show the scene changes due to lighting.

backward. Both failed at either end of the same stretch of
terrain. Figure 21 shows an image from the rover where it
stopped on the first repeat pass and a corresponding image
from the teach pass. It is clear from the image that the rover
was no more than 0.5 m laterally displaced from the path af-
ter 50 m without localization. Still, although the viewpoint
was nearly the same, the repetitive texture, different light-

ing, lack of horizon features, and lack of unique 3D objects
in the scene were too much. At this point, we would have
repositioned the rover onto the path or piloted it through
this section manually but it started to rain. After an hour,
we decided the rain would not let up, so we secured a tarp
over the rover and piloted it home manually. As stated ear-
lier, the second repeat pass came from the other direction.

(a) An image from the teach pass (b) The stopping position of the robot on the first repeat

      pass

Figure 21. Images from the teach-and-repeat passes of route uh-07-23-4963. The rover was unable to localize for 50 m even though
it was clearly on the path for most of the way. Repetitive texture, different lighting, lack of horizon features, and lack of unique 3D
objects in the scene were the major causes of localization dropouts.
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This time the rover stopped at the teach pass failure shown
in Figure 19 and was unable to relocalize. We commanded
the robot to continue using VO, but it was unable to local-
ize anywhere along the path. We were unable to find time
in our test schedule to test the route under weather condi-
tions similar to the teach pass.

6. DISCUSSION

Through our extensive field testing and evaluation of this
algorithm, we have learned a number of lessons that ap-
ply generally to the field of camera-based localization and
mapping. First and foremost, we have shown that long-
range autonomous navigation in unstructured, 3D terrain
is possible using a stereo camera as the only sensor and
using the SURF algorithm to detect and describe visual
landmarks. Recent work has shown that it is possible to
perform more accurate mapping using sparse bundle ad-
justment (Konolige et al., 2007; Sibley et al., 2009) and op-
timization over large-scale loops in the trajectory (Kono-
lige & Agrawal, 2008; Newman, Sibley, Smith, Cummins,
Harrison, et al., 2009). However, mapping accuracy did not
limit the performance of our algorithm, and we feel that
these advances, while desirable, are not necessary to build
a robust long-range navigation system. The rest of this sec-
tion will outline the major lessons learned throughout this
project.

The limitations of the feature detection and description
pipeline: The SURF algorithm had a lot of trouble deal-
ing with lighting changes. This was particularly evident
on terrain with 3D structure (the rocks in Figure 20 or on
grass) and less of an issue in urban environments (on con-
crete and near buildings). Although the SURF descriptor
is normalized to provide some invariance to the effects of
lighting, the detector will return different sets of points
when shadowing produces areas of high contrast in the
image. It is possible that performance could be improved
somewhat by preprocessing the images [e.g., the patch nor-
malization in Zhang & Kleeman (2009)], but strong shad-
ows on 3D terrain would continue to cause problems. We
have shown this for the SURF algorithm, but the results
hold for any image-space blob detector. To deal with light-
ing in the current framework, it would be possible to learn a
route several times under different lighting conditions and
then dynamically select the “best” map sequence for route
repeating (based on matching score or time of day). How-
ever, this does not address the main problem that the cur-
rent feature detection and description paradigm does not
deal well with lighting changes.

The utility of dead reckoning: Interleaving VO and lo-
calization was one of the keys to making this algorithm
work in practice. This is clearly demonstrated in the mul-
timedia extensions (Appendix A). VO carries the algorithm
through areas with moderate appearance changes, and lo-
calization keeps the estimate consistent over long distances

and corrects for VO failures. Although we found VO to be
very effective, some form of dead reckoning not based on
the camera could be very useful. A planetary exploration
rover with power and computational constraints could use
wheel odometry between stereo images in low-slip envi-
ronments. The combination of local submaps and wheel
odometry was already used by Marshall et al. (2008) for
navigation in underground mines. For terrestrial applica-
tions, we advocate the use of an inertial measurement unit
(IMU). As described by Corke, Lobo, and Dias (2007), cam-
eras and IMUs are complementary sensors. The use of
an IMU in this work would have eliminated teach pass
failures and compensated for VO failures due to motion
blur. Our next iteration will incorporate an IMU directly
into the mapping and localization framework.

The importance of map update: The performance of our
system degrades as the environment surrounding a route
changes over time. Solutions to this problem—sometimes
called persistent mapping (Milford & Wyeth, 2009) or life-
long learning (Konolige & Bowman, 2009)—must be devel-
oped before robots can be broadly deployed in service roles.
Although our system could be patched to remap while the
path is being followed, this would not address the under-
lying structure of the problem, which includes difficult is-
sues such as (i) differentiating static and dynamic scene
elements, (ii) periodic environmental changes (e.g., daily
lighting changes or seasonal changes), or (iii) joining dis-
parate maps in the event of a loop closure. We envision the
next iteration of our system becoming much like the one
described by Konolige and Bowman (2009), mapping and
localizing continuously online while retaining the ability to
retrace a known path at any time.

The utility of loop detection: Although it was not the fo-
cus of this work, the ability to handle loops and networks of
paths would increase the number of possible applications
of the algorithm. Loop detection in visual SLAM is an ac-
tive research area [see the recent review by Williams, Cum-
mins, Neira, Newman, Reid, et al. (2009)], and the incor-
poration of a fast, accurate loop-detection technique [such
as FAB-MAP (Cummins & Newman, 2008)] along with fur-
ther geometric consistency checking (Eade & Drummond,
2008) would provide two immediate benefits. First, the sig-
nal from a dedicated loop detection algorithm could to-
tally replace the submap selection component of our sys-
tem. Reliable automatic submap selection would make our
algorithm more robust to path-tracking errors or VO fail-
ures. Second, this would allow the system to build a graph
of connected route segments. The graph representation
could be used to plan routes between places on the map.
Within the current framework, it should be possible to stack
submaps at intersections (one submap per branch). How-
ever, navigating on a graph of routes would be more ele-
gantly handled using a continuous relative representation
(Mei et al., 2009; Sibley et al., 2009).
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7. CONCLUSION

We have presented a complete algorithm for performing
long-range rover navigation using a stereo camera as the
only sensor. Our system produces a combined topological/
metric map consisting of a sequence of small overlapping
submaps. As the rover progresses along a path, the nearest
submap is swapped into memory. The rover interleaves
VO and localization, using VO to carry the algorithm
through areas with moderate appearance changes and
using localization to ensure that the rover ends up in the
same physical place at the end of a long path. We have
tested our algorithm in an urban setting, over extreme
terrain, through indoor-to-outdoor lighting changes, and
in a planetary analog setting in the High Arctic that offered
many types of vegetation-free terrain. Of the 32.919 km
traveled, 99.6% was traversed autonomously, and in all
situations requiring an intervention, the rover stopped and
signaled the operator.

8. APPENDIX A: INDEX OF MULTIMEDIA
EXTENSIONS

Two multimedia extensions have been prepared to accom-
pany this work. The extensions show different views of the

Table BI. Teach passes.

Features
Tag Length (m) Maps per map Failures

ua-05-17-0726 725.6 253 2,937 0
uh-05-20-1152 1,151.7 405 3,484 0
uh-05-21-1170 1,169.7 410 3,424 0
uh-05-22-0120 120.0 42 5,218 0
uh-07-23-0120 119.7 43 5,323 0
uh-05-26-0202 201.8 71 3,714 0
ua-06-04-0086 85.6 30 1,924 0
ua-06-04-0048 47.7 17 1,857 0
ua-06-04-0097 96.8 35 1,581 3
ua-06-04-0091 91.1 31 1,924 0
ua-06-06-0081 81.5 28 1,718 0
ua-06-06-0184 184.4 65 1,563 0
ua-06-06-0186 185.8 65 1,975 1
ua-06-06-0167 166.9 60 1,540 0
dh-07-20-2120 2,120.0 740 3,680 1
da-07-20-0464 464.0 166 1,662 1
da-07-21-0453 453.5 161 1,960 1
dh-07-22-1091 1,090.9 382 5,110 0
dh-07-23-4963 4,962.5 1,732 3,993 5
da-07-23-0557 557.3 200 2,126 0
da-07-24-0425 424.6 151 2,225 0
da-07-29-0487 486.9 172 2,318 0
da-07-29-0486 486.2 176 2,415 0
dh-07-30-0347 347.3 124 3,147 0
dh-07-30-0187 187.5 66 3,322 0
dh-07-30-0153 152.8 54 3,145 0
dh-07-31-0192 191.8 68 5,431 0

algorithm performing on challenging routes. The videos
are available as Supporting Information files in the online
version of this article or at http://asrl.utias.utoronto.ca/
∼ptf/JFR VTnR.

Extension Media type Description

1 Video A video of route uh-05-22-0120,
repeat pass 6. The video shows
an external view, the robot’s
view during the repeat pass, the
nearest teach pass image, inlier
feature counts,
two-dimensional localization,
and 3D localization.

2 Video A video of route dh-07-31-0192,
repeat pass 2. The video shows
an external view, the robot’s
view during the repeat pass, the
nearest teach pass image, inlier
feature counts,
two-dimensional localization,
and 3D localization.

Table BII. Teach passes with difficulty metrics.

Elevation Min Max Min Max
Tag change roll roll pitch pitch

ua-05-17-0726 7.1 −7.8 12.2 −6.4 5.6
uh-05-20-1152 4.9 −18.4 8.2 −12.0 6.3
uh-05-21-1170 4.9 −17.8 11.9 −14.6 10.3
uh-05-22-0120 3.6 −14.7 11.7 −21.5 27.2
uh-07-23-0120 4.9 −13.3 12.1 −18.5 26.5
uh-05-26-0202 3.7 −5.5 3.5 −8.4 2.4
ua-06-04-0086 1.6 −8.0 2.9 −5.1 1.6
ua-06-04-0048 1.0 −6.7 5.5 −5.1 6.1
ua-06-04-0097 1.3 −6.6 3.3 −7.3 1.9
ua-06-04-0091 1.1 −5.8 3.1 −5.7 4.3
ua-06-06-0081 0.9 −9.4 4.0 −5.9 2.3
ua-06-06-0184 1.3 −7.9 3.7 −5.7 2.3
ua-06-06-0186 1.5 −10.4 4.9 −6.8 7.4
ua-06-06-0167 3.1 −8.8 3.1 −4.0 2.4
dh-07-20-2120 69.2 −22.0 15.9 −28.3 16.9
da-07-20-0464 8.7 −12.0 4.5 −9.7 6.9
da-07-21-0453 9.4 −13.0 4.3 −10.0 11.6
dh-07-22-1091 32.4 −7.4 10.0 −11.0 11.2
dh-07-23-4963 118.5 −12.8 13.6 −15.5 12.0
da-07-23-0557 36.7 −8.7 12.0 −11.7 13.4
da-07-24-0425 7.4 −6.7 5.9 −7.4 18.3
da-07-29-0487 9.1 −9.0 4.1 −13.0 7.5
da-07-29-0486 9.1 −6.6 3.4 −11.0 6.8
dh-07-30-0347 2.1 −12.2 13.1 −12.1 10.8
dh-07-30-0187 1.5 −6.1 8.5 −12.3 7.7
dh-07-30-0153 1.5 −6.9 5.9 −10.6 3.6
dh-07-31-0192 1.1 −9.8 10.9 −17.9 19.1
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9. APPENDIX B: CATALOG OF ROUTE-FOLLOWING
EXPERIMENTS

This appendix includes the complete listing of our route-
following experiments. Table BI lists each teach pass with
some basic information such as the length of the route, the
number of features per map, and the number of failures en-
countered teaching the route. Table BII lists some difficulty
metrics for each teach pass: the elevation change reported
by GPS and the roll and pitch variation measured by an in-
clinometer mounted on the sensor head. The repeat passes
are listed in Tables BIII and BIV. For each repeat pass we
report the start time of both the teach-and-repeat passes
(relevant for lighting effects), the percentage of the route
completed, the percentage of run completed autonomously,
the number of operator interventions, and the percentage of
time the algorithm was globally localized.
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Table BIII. Repeat passes (1/2).

Teach pass Repeat pass Operator Globally
Teach pass tag start time start time Completed (%) Autonomous (%) interventions localized (%)

ua-05-17-0726 12:27:12 14:27:02 100.0 100.0 0 41.1
12:50:02 100.0 100.0 0 91.8

uh-05-20-1152 12:04:45 09:25:48 100.0 100.0 0 88.8
uh-05-21-1170 12:16:02 20:26:28 100.0 92.0 1 49.6

12:54:14 100.0 100.0 0 99.2
15:28:08 100.0 100.0 0 97.4
16:14:01 100.0 100.0 0 99.1
08:03:44 100.0 98.4 3 45.0
09:04:15 100.0 100.0 0 76.3

uh-05-22-0120 18:13:22 10:23:40 100.0 100.0 0 96.8
10:56:05 100.0 100.0 0 94.1
11:18:14 100.0 100.0 0 96.0
11:41:32 100.0 100.0 0 91.7
11:59:30 100.0 100.0 0 95.8
13:04:15 100.0 100.0 0 89.1
11:17:39 100.0 100.0 0 90.8

uh-07-23-0120 16:53:43 18:39:23 100.0 100.0 0 93.6
19:00:53 100.0 100.0 0 97.3
19:12:07 100.0 100.0 0 95.8
19:22:49 100.0 100.0 0 97.8
19:33:36 100.0 100.0 0 95.5

uh-05-26-0202 11:14:39 07:44:53 100.0 100.0 0 95.9
08:53:08 100.0 100.0 0 95.5
09:41:09 100.0 100.0 0 88.7
10:41:07 100.0 100.0 0 87.5
11:39:57 100.0 100.0 0 95.0
12:38:06 100.0 100.0 0 94.7
13:34:20 100.0 100.0 0 98.8
14:38:29 100.0 100.0 0 86.0
14:58:39 100.0 100.0 0 88.8

ua-06-04-0086 12:57:06 13:12:38 100.0 100.0 0 99.4
ua-06-04-0048 14:41:09 14:51:15 100.0 100.0 0 97.2
ua-06-04-0097 14:48:50 15:10:59 87.4 95.5 2 93.4
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Table BIV. Repeat passes (2/2).

Teach pass Repeat pass Operator Globally
Teach pass tag start time start time Completed (%) Autonomous (%) interventions localized (%)

ua-06-04-0091 16:26:46 16:37:13 100.0 100.0 0 84.5
ua-06-06-0081 10:01:59 10:08:55 100.0 100.0 0 100.0
ua-06-06-0184 10:25:07 11:35:48 100.0 100.0 0 99.7
ua-06-06-0186 13:11:57 13:55:08 100.0 98.4 1 81.5
ua-06-06-0167 21:09:38 21:45:16 100.0 100.0 0 100.0
dh-07-20-2120 10:18:18 09:45:12 100.0 100.0 0 97.4

11:05:46 100.0 100.0 0 89.9
da-07-20-0464 16:09:42 16:46:56 100.0 100.0 0 94.4
da-07-21-0453 17:26:10 18:07:05 100.0 100.0 0 98.4
dh-07-22-1091 08:55:08 10:35:23 100.0 100.0 0 99.5

11:14:58 100.0 100.0 0 100.0
12:00:56 100.0 100.0 0 99.2
13:40:39 100.0 100.0 0 99.9
14:13:58 100.0 100.0 0 97.5

dh-07-23-4963 08:50:49 08:49:24 64.9 100.0 0 96.3
15:07:49 32.8 100.0 0 76.2

da-07-23-0557 17:19:32 18:21:22 100.0 100.0 0 99.2
da-07-24-0425 16:24:23 17:20:45 100.0 100.0 0 98.4
da-07-29-0487 11:41:31 15:28:45 100.0 100.0 0 96.7
da-07-29-0486 16:04:04 15:28:45 100.0 100.0 0 96.7

17:00:29 100.0 100.0 0 96.0
dh-07-30-0347 12:03:40 12:49:47 100.0 100.0 0 89.5
dh-07-30-0187 14:35:09 18:37:18 78.4 100.0 0 9.9

10:02:35 100.0 100.0 0 75.7
dh-07-30-0153 16:33:18 16:59:04 100.0 100.0 0 93.9
dh-07-31-0192 11:40:01 12:27:23 100.0 100.0 0 100.0

12:50:01 100.0 100.0 0 92.7

reviewers for their insightful comments and constructive
criticism.
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Šegvić, S., Remazeilles, A., Diosi, A., & Chaumette, F. (2009).
A mapping and localization framework for scalable
appearance-based navigation. Computer Vision Image
Understanding, 113(2), 172–187.

Sibley, G., Matthies, L., & Sukhatme, G. (2008). A sliding win-
dow filter for incremental SLAM. In Unifying perspec-
tives in computational and robot vision, vol. 8 of Lecture
Notes in Electrical Engineering (pp. 103–112). New York:
Springer US.

Sibley, G., Mei, C., Reid, I., & Newman, P. (2009, June). Adap-
tive relative bundle adjustment. In Robotics Science and
Systems (RSS), Seattle, WA.

Tang, L., & Yuta, S. (2001, May). Vision based navigation for
mobile robots in indoor environment by teaching and
playing-back scheme. In IEEE International Conference on
Robotics and Automation, 2001. Proceedings 2001 ICRA,
Seoul, Korea (vol. 3, pp. 3072–3077).

Wettergreen, D., Dias, M., Shamah, B., Teza, J., Tompkins, P.,
Urmson, C., Wagner, M., & Whittaker, W. (2002, May).
First experiment in sun-synchronous exploration. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation (ICRA), Washington, DC (pp. 3501–
3507).

Wettergreen, D., Tompkins, P., Urmson, C., Wagner, M., &
Whittaker, W. (2005). Sun-synchronous robotic explo-
ration: Technical description and field experimentation.
International Journal of Robotics Research, 24(1), 3–30.

Williams, B., Cummins, M., Neira, J., Newman, P., Reid, I., &
Tardós, J. (2009). A comparison of loop closing techniques
in monocular SLAM. Robotics and Autonomous Systems,
57(12), 1188–1197.

Zhang, A. M., & Kleeman, L. (2009). Robust appearance based
visual route following for navigation in large-scale out-
door environments. International Journal of Robotics Re-
search, 28(3), 331–356.

Journal of Field Robotics DOI 10.1002/rob


