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Current rover localization techniques such as visual odometry have proven to be very effective on short-
to medium-length traverses (e.g., up to a few kilometers). This paper deals with the problem of long-range
rover localization (e.g., 10 km and up) by developing an algorithm named MOGA (Multi-frame Odometry-
compensated Global Alignment). This algorithm is designed to globally localize a rover by matching features
detected from a three-dimensional (3D) orbital elevation map to features from rover-based, 3D LIDAR scans.
The accuracy and efficiency of MOGA are enhanced with visual odometry and inclinometer/sun-sensor orien-
tation measurements. The methodology was tested with real data, including 37 LIDAR scans of terrain from a
Mars–Moon analog site on Devon Island, Nunavut. When a scan contained a sufficient number of good topo-
graphic features, localization produced position errors of no more than 100 m, of which most were less than
50 m and some even as low as a few meters. Results were compared to and shown to outperform VIPER, a
competing global localization algorithm that was given the same initial conditions as MOGA. On a 10-km tra-
verse, MOGA’s localization estimates were shown to significantly outperform visual odometry estimates. This
paper shows how the developed algorithm can be used to accurately and autonomously localize a rover over
long-range traverses. C© 2010 Wiley Periodicals, Inc.

1. INTRODUCTION

The ongoing Mars Exploration Rover (MER) missions have
proven to be historic landmarks in space exploration. How-
ever, they are also humbling reminders of the challenges
ahead. For example, the MER Opportunity has operated on
Mars for more than 5 years now but has driven only a total
of about 20 km due to mechanical/energy limitations and
a lack of autonomy (Li, Arvidson, Di, Golombek, Guinn,
et al., 2007). An important goal for future generations of
rovers will be to overcome these deficiencies to allow them
to explore sites hundreds of kilometers away from their lan-
ders (Behar, Matthews, Carsey, & Jones, 2004). Rovers will
consequently require an autonomous long-range localiza-
tion system to aid them in their journey.

Currently, a rover employs a variety of techniques to
determine its pose at any given time. The MERs were first
localized with radio tracking (Guinn, 2001), with descent
trajectory modeling, and by comparing orbital to ground
camera imagery (Li et al., 2007). Upon leaving their lan-
ders, localization has been accomplished primarily with
dead-reckoning techniques such as wheel odometry, visual
odometry (VO), and local bundle adjustment (BA). Wheel
odometry is not computationally intensive but is highly
vulnerable to sensor noise and mechanical disturbances
(e.g., wheel slippage) (Li, Squyres, & Arvidson, 2005). Com-
puter vision techniques, such as VO and BA, complement
wheel odometry when needed.

VO is automated and can work in real time but is
computationally very demanding. It has yielded impres-
sive results in the past with error as low as 0.1% over a
10-km traverse (Konolige, Agrawal, & Sola, 2007). BA can
offer further gains in accuracy (Li, Archinal, Arvidson, Bell,
Christensen, et al., 2006), but efforts to automate the pro-
cess are ongoing (Li, Di, & Howard, 2007). Despite sig-
nificant advances in the technology, such dead-reckoning
approaches are not suitable for long-range localization
(e.g., more than 10 km) because they will always exhibit
unbounded error growth with distance traversed (Olson,
Matthies, Schoppers, & Maimone, 2003).

Global localization techniques can be used to correct
dead-reckoning pose estimates once these become unre-
liable. On Earth, the global positioning system (GPS) is
commonly used for this purpose. However, the satellite in-
frastructure required for such a system is not feasible for
non-Earth applications. This paper proposes an alternate
solution that aligns a rover-based three-dimensional (3D)
local map to a satellite-based 3D global map.

In this research, the local map is a point cloud ob-
tained from a time-of-flight LIDAR (Light Detection and
Ranging). This instrument can measure distance to far-
away objects by rapidly firing a laser and measuring the
time for reflected beams to return. In a surveying config-
uration, a LIDAR can sample terrain with centimeter ac-
curacy at a range of up to 1.5 km, making it a vital guid-
ance and navigation sensor. The technology is also quite
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Table I. Summary of coverage and resolutions for various satellite data sets.

Target Instrument Description Coverage Horiz. res. Vert. res.

Moon LOLA Laser altimeter Total 50–100 m 10 cm
LROC Camera >10% 50 cm NA

Mars MOLA2 Laser altimeter Total 100 m 1 m
HiRISE Camera 2% <1 m <1 m

Sources: For LOLA and LROC see Chin, Brylow, Foote, Garvin, Kasper, et al. (2007). For MOLA2 see Smith, Zuber, Frey, Carvin, Head, et al.
(2001). For HiRISE see Johnston, Graf, Zurek, and Eisen (2005) and McEwen, Eliason, Bergstrom, Bridges, Hansen, et al. (2002).

robust, having been tested in numerous applications on
Earth (Bakambu, Allard, & Dupuis, 2006; Vandapel, Don-
amukkala, & Hebert, 2006) and in space (Nimelman, Tripp,
Allen, Hiemstra, & McDonald, 2006; Shotwell, 2005).

The global map may be acquired from a satellite-based
laser altimeter (e.g., LOLA, MOLA2), or by extracting 3D
information from a stereo pair of high-resolution satellite
images (e.g., LROC, HiRISE) (Li, Di, Hwangbo, & Chen,
2007). Current satellites have extensive and accurate cover-
age of the Moon and Mars (see Table I). Therefore, relevant
map data could be loaded into a rover even before it begins
its mission. This would allow the rover to autonomously
localize without requiring any additional map data from
Earth.

The objective of this paper is to develop and demon-
strate MOGA (Multi-frame Odometry-compensated Global
Alignment), a novel algorithm for long-range localization
of a rover by matching rover-based, 3D LIDAR maps to
a 3D orbital map. Given the same inputs and making
the same assumptions, performance is compared between
MOGA and VIPER (Cozman, Krotkov, & Guestrin, 2000),
a well-documented, competing algorithm that is currently
the state of the art for this type of localization problem.
It will also be shown how commonly available measure-
ments such as heading from a sun sensor (Enright, Furgale,
& Barfoot, 2009) and VO can be used to improve the effi-
ciency, robustness, and accuracy of MOGA.

The paper is divided into a number of sections de-
tailing the methodology and proof-of-concept experiments.
Section 2 references key related work. The overall archi-
tecture is outlined in Section 3, followed by a detailed de-
scription of the methodology in Sections 4–6. In Sections 7
and 8, data and results are presented from field tests at a
Mars/Moon analog site.

2. RELATED WORK

A series of matching techniques were considered to align
the global and local maps. Iterative closest point (ICP) (Besl
& McKay, 1992) and other full-surface matching algorithms
are not appropriate because they attempt to minimize the
distance between all points on both surfaces and are there-
fore too much of a computational burden. This is partic-
ularly true when using a LIDAR scan, which could con-

tain millions of points spread out over hundreds of meters.
There is also no guarantee of convergence, particularly for
maps expressed in highly differing reference frames. ICP is
more often used as a postprocessing step to refine the pose
estimate (Bakambu et al. 2006; Johnson, 1997).

Johnson and Montgomery (2008) investigate a number
of localization techniques for precise lunar landing. Among
these is cross correlation, which like ICP uses the entire LI-
DAR scan to find a match. However, this method is not
ideal when dealing with a large global map or with the sig-
nificant resolution and perspective differences between lo-
cal and global maps.

A feature-based approach is instead considered in
which interest points are first extracted from the global and
local maps and then matched in search of global–local fea-
ture correspondences. If at least three, noncollinear feature
correspondences are found, a rigid 3D transformation can
be expressed that aligns the two maps (Horn, 1987).

Some examples of 3D feature matching techniques
are spin images (Johnson, 1997), point fingerprints (Sun,
Paik, Koschan, Page, & Abidi, 2003), and local-shape
descriptors (Taati, Bondy, Jasiobedzki, & Greenspan, 2007).
These algorithms compare features by creating a descriptor
for each feature based on the local surface geometry. For
example, a spin-image descriptor is a two-dimensional
(2D) histogram representing the distances of surrounding
map points to the local tangent plane and normal vector
at the feature’s location. Upon comparison of two features’
descriptors, a correspondence is made if their descriptors
are sufficiently similar. Perhaps more well-known are
the 2D SIFT (Lowe, 1999) and SURF (Bay, Tuytelaars, &
Van Gool, 2006) feature descriptors, which are used to
analyze images in an analogous way.

The most prominent features visible to both a low-
resolution orbital map and a high-resolution LIDAR map
are topographic peaks. Because one side of a peak will al-
ways be hidden from the rover, features from the LIDAR
map will be only partially describable as shown in Figure 1.
It will therefore be difficult to compare features between
the two maps if a descriptor-based approach is used. A
more convenient alternative is to search for similar feature
constellations, where the spacing between features now ef-
fectively acts as the descriptor. Chen, Hung, and Cheng
(1999) developed a framework for this approach known as
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Figure 1. (a) Difficulties in matching a low-resolution orbital map (top) to a high-resolution, occluded LIDAR map (bottom).
(b) Occluded LIDAR map overlaid onto a contour map of the terrain. LIDAR origin is located off the map in the upper left
direction. Elevation increases with lighter shading.

the Data-Aligned Rigidity-Constrained Exhaustive Search
(DARCES).

Previous work has investigated these techniques in the
context of localization. Bakambu et al. (2006) examined the
problem of matching two LIDAR scans. The spin-image
and point fingerprint descriptors were evaluated and com-
bined with DARCES to improve results. Vandapel et al.
(2006) localized an unmanned, LIDAR-equipped, ground
vehicle in heavily vegetated environments with the spin-
image technique. The global map was obtained from a
LIDAR-equipped helicopter.

Li, Di, and Howard (2007) present a framework that
uses VO and BA to globally localize a rover with an image
network containing orbital data. Their implementation suf-
fers from a lack of automation due to the difficulty in over-
coming significant differences in resolution and perspective
between orbital and ground imagery.

The VIPER algorithm (Cozman et al., 2000) estimates
the global position of a rover by matching the horizon sky-
line in a panoramic image to predicted skylines at various
positions on the global map. To reduce the complexity of
the problem, the algorithm assumes that the orientation of
the platform has been estimated using celestial and gravi-
tational sensors. As demonstrated in later sections, VIPER
reaches a solution very quickly because the bulk of the com-
putational work is in extracting predicted skylines from the
global map, which can be done offline. However, VIPER

depends on good atmospheric conditions (e.g., high visi-
bility, daytime use) and uses only topographic information
on the skyline projected into image space. This ignores in-
formation below the skyline and may result in ambiguities
between locations with significantly different topography
that produce similar skyline profiles.

VIPER has been subjected to field tests, producing po-
sition estimates on more than 14 image panoramas from
five different test sites with large, 150-km2 global maps of
resolution 30 m or less. Cozman et al. (2000) report local-
ization accuracy between 84 and 564 m. As such, VIPER
is considered the state of the art in automatic, global lo-
calization using a low-resolution global map. This paper
presents MOGA, a novel solution to the long-range local-
ization problem with an approach similar to that of VIPER
but using 3D maps instead of 2D images.

3. ARCHITECTURE OVERVIEW

The architecture is developed for the general case in which
a rover traverses over some distance and occasionally stops
to scan the terrain with the LIDAR as shown in Figure 2.
The general formulation can also be simplified by omitting
odometry to examine single-scan localization.

The goal is to determine the rover’s pose at each scan
site with respect to the global map’s reference frame, F−→o.
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Figure 2. Rover traverses to LIDAR scan sites collecting
odometry along the way (e.g., the odometry-measured trans-
lation and rotation from site A to B are, respectively, ρBA

A and
CBA).

The rover pose at scan site � is defined as a transforma-
tion, T�o := {t�o, S�o}, from F−→o to the rover’s local frame
F−→�, where t�o and S�o are, respectively, the translation vec-
tor and rotation matrix from F−→o to F−→�. An overview is pre-
sented in Figure 3 and summarized as follows:

(a) Feature detection: Features are detected from the
global and local maps.

(b) Feature matching: DARCES obtains global–local fea-
ture correspondences and an initial estimate of the
rover’s poses.

(c) Pose refinement: Global–local feature correspondences
are used in combination with orientation and odome-
try measurements to refine rover pose estimates.

The sections to follow discuss each architecture component
in further detail.

4. FEATURE DETECTION

Features must first be detected [box (a) in Figure 3] from
the global map (the global features) and from the local map
(the local features). It is assumed that a global elevation
map is given with resolution Lxy , as well as one or more
local elevation maps. Generally, the most prominent fea-
tures common to both maps are topographic peaks. These
peaks are detected using a local maxima detector based
on morphological dilation1 (Haralick & Shapiro, 1992; van
den Boomgaard & van Balen, 1992). Other feature detectors
could also be used within the presented framework.

The scan is leveled using pitch and roll measurements
(e.g., inclinometer). This ensures that the +z directions (i.e.,
vertical) of the global and local maps roughly coincide. The
local map is gridded [box (a) in Figure 4] to the global map
resolution, Lxy , to ensure that the scale of detected global
and local features is the same. When gridding, nearest-
neighbor interpolation is used because it tends to reduce
the number of poor, false peaks detected. Features may now
be detected using morphological dilation.

Morphological dilation [see box (b) in Figure 4] re-
places lower grid values with neighboring higher grid val-

1This was inspired by code found on the Matlab Central repository
as “localMaximum.m” by Yonathan Nativ.

ues. Applied to an elevation map, this will effectively blur
out low elevations. The extent of the blurring depends on
the size and shape of the window used. The operation re-
places the window’s center point value with the highest
value within the bounds of the window. Once dilation is
completed for all points on the grid, the blurred map is
compared to the original map. Cells with no change in
value are interpreted as local maxima.

The dilation window is chosen to be a pixelated circle
as shown in Figure 5. This is done to make the coverage of
the window as uniform as possible in all directions. The ra-
dius of this circle limits the size of the detected features, as
well as the distance between features. The minimum dis-
tance between features, Ddetect, depends on the global map
resolution, Lxy , such that Ddetect := n × Lxy , where n is the
circle’s cell radius. The same window is applied to global
and local maps.

Features must now undergo some final processing to
eliminate false peaks that might be detected in flat areas
[see box (c) in Figure 4]. This is primarily done by ensur-
ing that the minimum distance between any two features
is Ddetect. Global features are particularly prone to be de-
tected in large clusters in flat areas as a result of the low
resolution of the global map. Therefore, each global feature
is also tested for flatness. The flatness metric is the maxi-
mum z deviation between a detected feature and all other
map points within a range of Ddetect. If this quantity is less
than Eflat := Lz/2, where Lz is the global map z resolution,
the feature is deleted because it is located in an uninterest-
ing, flat area. Sample feature detection results are shown in
Figure 6.

A good uncertainty model is necessary to correctly
assess the quality of individual features and global–local
matches. Global feature positional uncertainty is assumed
to be equal to the global map’s measurement uncertainty
(i.e., the position uncertainty of a measured 3D point in the
global map). The global feature covariance matrix is there-
fore RG := diag{σ 2

rGxy
, σ 2

rGxy
, σ 2

rGz
}, where σrGxy

and σrGz
are,

respectively, the standard deviations of x–y and z global
map measurements.

The local map uncertainty (i.e., the position uncer-
tainty of a measured 3D point from the LIDAR), σrLM , is
comparatively very small (<1 m) even for measurements
far from the LIDAR’s origin. However, the effect of occlu-
sions will dominate the uncertainty in local feature mea-
surements. To address this issue, the following heuristic
was employed, which worked well in practice. Other ap-
proaches might also be possible. The x–y uncertainty is re-
lated to the size of a local feature, σrLxy

:= Ddetect/2. The z

uncertainty, σrLz
, will depend on the elevation of the ob-

served feature with respect to the LIDAR. If the feature is
below the LIDAR, σrLz

is set to the local map uncertainty,
σrLM . If the feature is above the LIDAR, σrLz

also depends
on the feature’s elevation angle with respect to the LIDAR,
θL, and the uncertainty in the x–y positions, σrLxy

, as shown
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Figure 3. Overall architecture.
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Figure 4. Feature detection architecture [blowup of box (a) in Figure 3].

in Figure 7. This gives

σ 2
rLz

:=
{

σ 2
rLM

+ (σrLxy
tan θL)2, θL ≥ 0

σ 2
rLM

, θL < 0
. (1)

The local position covariance matrix is then RL :=
diag{σ 2

rLxy
, σ 2

rLxy
, σ 2

rLz
}.

5. FEATURE MATCHING

The feature matching methodology [box (b) in Figure 3]
is based on the DARCES algorithm (Chen et al., 1999) de-
picted in Figure 8. DARCES searches for similar constella-
tions of features between two maps by comparing features’
relative positions. LIDAR scans are processed individually.

5.1. Hypothesis Generation

Hypothesized correspondences must first be generated be-
tween global and local features [box (a) in Figure 8]. A hy-
pothesis is defined as a group of possible correspondences

Ddetect

Figure 5. Pixelated circle with n = 5.

between three unique local features, called control points,
and three unique global features. A hypothesis is generated
if the distances between three global features are similar to
the distances between three local features.

To quantify this statement for a pair of correspon-
dences, consider the case in which two local control point
features L1 and L2 are hypothesized to correspond, respec-
tively, with global features G1 and G2. The two local fea-
tures are separated by a distance dL and the two global
features by dG. If the correspondences were correct and all
measurements noiseless, dL and dG would be equal. How-
ever, noise will produce an error, EGL := dG − dL.

For these feature correspondences to be considered for
a hypothesis, EGL must satisfy |EGL| ≤ t . The threshold, t ,
is chosen such that t := 2σEGL , where σEGL is one standard
deviation of uncertainty in EGL. Set at two standard devia-
tions, 95% of valid correspondences should fall within this
threshold and be correctly detected as a hypothesis. There-
fore, assuming zero covariance,

|EGL| ≤ 2
(
σ 2

dG
+ σ 2

dL

)1/2
, (2)

where σdG and σdL are, respectively, the uncertainties in dG
and dL. To determine these quantities, uncertainty must
be propagated from known feature position uncertainties.
Again assuming zero covariance between measurements, it
can be shown that

σ 2
dL

:= 1

d2
L

(pL1 − pL2)T (RL1 + RL2)(pL1 − pL2), (3)

σ 2
dG

:= 2

d2
G

(pG1 − pG2)T RG(pG1 − pG2), (4)
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Figure 6. Detected features. (a) 495 global features plotted on global map. (b) Local 3D features (scan A08) projected onto a section
of a 2D panoramic image to show detection of peaks.

where the p and R terms are, respectively, the positions and
covariance matrices of the indicated features. If three pairs
of features satisfy these conditions, a hypothesis is gener-
ated. However, a hypothesis is not guaranteed to be cor-
rect due to noise in feature position measurements. There-
fore, many control point groups are tested to increase the
chances of finding a valid hypothesis.

5.2. Hypothesis Evaluation

The validity of a hypothesis is evaluated [box (b) in
Figure 8] based on the transformation it produces between
the global and local frame. For a hypothesis i, this transfor-
mation from F−→o to F−→�, Ti

�o := {ti�o, Si
�o}, can be obtained

using a least-squares point-alignment algorithm (e.g. Arun,

Huang, & Blostein, 1987) to align the three global and three
local features that comprise a hypothesis.

To improve the efficiency and robustness of DARCES,
hypotheses are first screened with a number of simple tests
[box (a) in Figure 9]. A map-boundary test rejects hypothe-
ses that estimate the rover’s position outside the global
map. A z-deviation test ensures that an estimated z posi-
tion is within Ezdev of the global map’s elevation at the esti-
mated x–y position. Finally, orientation tests check that es-
timates and measurements (e.g., inclinometer, sun sensor)
of roll α, pitch β, and heading γ differ by no more than Eα ,
Eβ , and Eγ . These thresholds must be chosen such that they
reject a low proportion of valid hypotheses and a high pro-
portion of invalid hypotheses. For example, Ezdev := 2σrGz

,
where σrGz

is one standard deviation of the global map z

uncertainty.
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Figure 7. Local feature uncertainty due to occlusions.

A measure of fitness is then calculated for each hypoth-
esis by examining how well the hypothesized transforma-
tion aligns LIDAR scan points to the global map [box (b)
in Figure 9]. To more efficiently and robustly calculate this
metric, the full LIDAR scan is decimated to half the global
map resolution, Lxy/2. These more evenly spread local map
points are called the reference points.

For a hypothesis i, the fitness metric, fi , is the average
absolute z error between the reference points, transformed
to the global frame with Ti

�o, and the global map:

fi := − 1
Nref

Nref∑
j=1

∣∣zR
i,j − zG

i,j

∣∣, (5)

where Nref is the number of reference points, zR
i,j is the z

position of the transformed reference point j in the global
frame, and zG

i,j is the interpolated global map elevation
at the x–y position of the transformed reference point j .

The negative is applied so that a low average absolute er-
ror corresponds to a high fitness. After much experimen-
tation, it has become evident that this hybrid approach, in
which sparse features are used to generate hypotheses and
denser scans to validate these hypotheses, is paramount in
allowing the algorithm to function both efficiently and ac-
curately.

Now that a fitness is associated with each hypothe-
sis, a search is made for valid hypotheses. This is a diffi-
cult task because many hypotheses could remain even af-
ter the screening stages. Johnson (1997) handles this by set-
ting a threshold for data points that have a fitness much
better than all others. Data points exceeding this thresh-
old would then be considered valid. This method was at-
tempted (Carle, 2009), but was dropped in favor of an
approach that proved to be more robust. The alternative
method examines the clustering of hypothesized positions.
This technique requires that several valid hypotheses are
available in the data. If several valid hypotheses exist, then
there should be a cluster of closely positioned, high-fitness
hypotheses in the data.

The first step is to select the top Ntop hypotheses with
the highest fitness. The mean position, tm, of these top hy-
potheses is then calculated. If all Ntop hypotheses are within
a distance Dvalid of tm, then all hypotheses in this group
are considered valid. The hypothesis with the highest fit-
ness is then returned, and its associated transformation es-
timate and global–local feature correspondences output to
the next stage of the algorithm. If no group of valid hy-
potheses is found once all combinations of control points
have been exhausted, then DARCES returns no solution.
Sample data are shown in Figure 10 to help underscore the
significant challenges in locating a valid hypothesis.

(a) Hypothesis 
Generation

(b) Hypothesis 
Evaluation

Local Map

Global
Features

Local
Features

Hypotheses

Orientation
Measurements

Pose 
Estimates

Correspon
-dences

Figure 8. Feature matching architecture [blowup of box (b) in Figure 3].
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and Final
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Hypotheses

Hypotheses

Local Map

Pose
Estimates

Correspon
-dences

Orientation
Measurements

Figure 9. Overview of hypothesis evaluation and selection.
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Figure 10. Hypotheses for scan A08 at various stages in the algorithm. In (d), local features are transformed to the global frame
using the transformation from the hypothesis with the best fitness.
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Figure 11. Pose refinement architecture [blowup of box (c) in Figure 3].

6. POSE REFINEMENT

The feature correspondences obtained from feature match-
ing are now combined with odometry and orientation mea-
surements into a simultaneous localization and mapping
(SLAM) problem to refine pose estimates [box (c) in Fig-
ure 3]. The MOGA algorithm, developed for this paper,
solves this problem by minimizing the errors between all
available measurements and desired estimates. Outlier fea-
ture correspondences are also rejected with an enveloping
RANSAC (Random Sample Consensus) algorithm. This is
essentially a batch SLAM algorithm that fuses relative and
absolute pose measurements over an entire rover traverse.
The algorithm is outlined in Figure 11.

6.1. MOGA

The main goal is to estimate the transformations from the
global frame, F−→o, to each of the M local frames, F−→�. This
M-frame alignment problem is depicted in Figure 12.

Input measurements are assumed to be corrupted with
white, zero-mean, Gaussian noise. There are four types of
measurement:

• In the global frame, F−→o, there are N measured feature

positions, rfj

o , with 3 × 3 covariance matrix, Rfj

o . These
are the features detected in the orbital map.

• In each local frame, F−→�, there are N� ≤ N measured fea-

ture positions, where rf�,k
o�

is the position of a feature k in
F−→�. The 3 × 3 covariance matrix for this measurement is

Rf�,k
o�

. These are the features detected in the LIDAR scans.
Corresponding global features have been found for each
local feature.

• There are odometry measurements of the rotation,
Co�+1o�

, and translation, ρ
o�+1o�
o�

, between adjacent local
frames F−→� and F−→�+1. The combined 6 × 6 covariance

matrix is Qo�+1o�
o�

. These would be obtained from VO, for
example.

• For each local frame, F−→�, there is an orientation mea-
surement, Co�o, from F−→o to F−→� with 3 × 3 covariance
matrix Ro�o

o�
. These would be measured with a sun sen-

sor and an inclinometer, for example.

Three (2M + N ) design parameters must be estimated.
The three types are as follows:

• An estimated rotation, So�o, from the global frame F−→o to
each of the M local frames F−→�.

• An estimated translation, to�o
o , from the global frame F−→o

to each of the M local frames F−→� and expressed in F−→o.

• An estimated position, plj
o , expressed in F−→o for each

of the N unique features. These feature landmarks will
help to improve rotation and translation estimates.

The optimal design parameters will be obtained by mini-
mizing the sum of squared errors between estimates and
measurements. There are four types of error (one for each
measurement):

• Jfj
, between estimated landmark feature positions and

measured global feature positions.
• Jf�,k

, between estimated landmark feature positions and
measured local feature positions.

• Jo�+1o�
, between estimated and odometry-measured

transformations from F−→� to F−→�+1.
• Jo�o, between estimated and measured frame rotations

from F−→o to F−→�.

To allow all design parameters to be optimized simulta-
neously, each of these error terms must be expressed as a
function of a common design parameter column, z. This pa-
rameter is further discussed in the next section. The overall
objective function, J (z), is then

J (z) :=
N∑

j=1

Jfj
(z) +

M∑
�=1

N�∑
k=1

Jf�,k
(z) +

M−1∑
�=1

Jo�+1o�
(z)

+
M∑

�=1

Jo�o(z). (6)

The optimal design parameter column, z∗, is sought
by minimizing the objective function through uncon-
strained optimization: z∗ := argminzJ (z). An iterative
Gauss–Newton algorithm (Björck, 1996) is used to solve
this nonlinear least-squares problem. The sections to follow
derive the error terms and explain how they are combined
to optimize the design parameters.
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Figure 12. The M-frame alignment problem.

6.2. Local Feature Terms, J f�,k

A local feature’s error term, Jf�,k
, is simply the squared dif-

ference between its position measurement, rf�,k
o�

, and its po-

sition estimate, plω(�,k)
o . The latter must be transformed to F−→�

using the estimated translation and rotation to�o
o and So�o.

This produces

Jf�,k
:= 1

2

[
rf�,k
o�

− So�o

(
plω(�,k)

o − to�o
o

)]T
× Rfj

−1

o�

[
rf�,k
o�

− So�o

(
plω(�,k)

o − to�o
o

)]
. (7)

Note that maximum likelihood has been implemented
by weighting the error term with the inverse covariance
matrix of the measurement involved, Rfj

o�
. Also known

as the Mahalanobis distance (Mahalanobis, 1936), this
causes more precise measurements to be weighted more
heavily.

When optimizing with the Gauss–Newton algorithm,
an objective function quadratic in the design parameters
is needed. This is not the case with the objective func-
tion in question due to the rotations involved. Therefore,

it is necessary to make a quadratic approximation for J (z).
The translation and landmark position parameters are per-

turbed such that to�o
o�

=: t̄o�o
o�

+ δto�o
o�

and plω(�,k)
o =: p̄lω(�,k)

o +
δplω(�,k)

o , where t̄o�o
o�

and p̄lω(�,k)
o are nominal estimates and δto�o

o�

and δplω(�,k)
o are perturbations.

Rotation perturbations must be handled more care-
fully because rotation matrices cannot be summed but
must be multiplied in a specific order. This gives So�o =:
δSo�oS̄o�o, where S̄o�o is the nominal estimate and δSo�o is
a small, perturbing rotation. It will be convenient to ex-
press this small rotation as a vector using the approxima-
tion δSo�o ≈ 1 − δθ×

o�o
, where δθ×

o�o
is a skew symmetric

matrix created by applying the cross operator to an in-
finitesimal rotation vector, δθo�o. This vector is an axis-angle
parametrization of a rotation. For more details on these con-
cepts, see Hughes (1986).

The overall rotation can then be decomposed as So�o ≈
(1 − δθ×

o�o
)S̄o�o, where the rotation perturbation, δθo�o, may

be isolated knowing that the cross product is anticommu-
tative, i.e., u×v = −v×u. Substituting these results into the
objective function of Eq. (7), using this anticommutative
property, and expressing the objective function for clarity
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as Jf�,k
= 1

2 eT
f�,k

Rf�,k
−1

o�
ef�,k

gives

ef�,k
:≈ rf�,k

o�
− S̄o�o

(
p̄lω(�,k)

o − t̄o�o
o

)
−

{[
S̄o�o

(
p̄lω(�,k)

o − t̄o�o
o

)]×
δθo�o

+S̄o�o

(
δplω(�,k)

o − δto�o
o

)}
. (8)

Note that an approximation has been made by dropping
products of small terms. The remaining perturbed quanti-
ties make up the z column, which can now be expressed
as z := [δpl

o δto δθ ]T , where δpl
o represents the column of

all N landmark position perturbations in F−→o and δto and
δθ are, respectively, the columns of all M translation and
M rotation perturbations from F−→o to F−→�. The error term
can then be written in a convenient form with ef�,k

= bf�,k

− Af�,k
z, where

bf�,k
:= rf�,k

o�
− S̄o�o

(
p̄lω(�,k)

o − t̄o�o
o

)
, (9)

Af�,k
:= [Df�,k

Ef�,k
Ff�,k

], (10)

Df�,k
:= [0 · · ·

ω(�,k)th term︷︸︸︷
S̄o�o · · · 0]︸ ︷︷ ︸

N landmarks

, (11)

Ef�,k
:= [0 · · ·

�th term︷ ︸︸ ︷
−S̄o�o · · · 0]︸ ︷︷ ︸

M frames

, (12)

Ff�,k
:= [

0 · · ·
�th term︷ ︸︸ ︷[

S̄o�o

(
p̄lω(�,k)

o − t̄o�o
o

)]× · · · 0
]︸ ︷︷ ︸

M frames

. (13)

6.3. Global Feature Terms, J f j

The Jfj
error term is derived in a similar way. For a single

feature, Fj , the result is

Jfj
:= 1

2

(
p̄lj

o + δplj
o − rfj

o

)T R
f −1

j

o

(
p̄lj

o + δplj
o − rfj

o

)
, (14)

which can be conveniently expressed as Jfj
= 1

2 eT
fj

R
f −1

j

o efj
,

where efj
:= bfj

− Afj
z and

bfj
:= p̄lj

o − rfj

o , (15)

Afj
:= [Dfj

03×3M 03×3M ], (16)

Dfj
:= [0 · · ·

j th term︷︸︸︷
−1 · · · 0]︸ ︷︷ ︸

N landmarks

. (17)

6.4. Odometry Terms, Jo�+1o�

The odometry measurement path from F−→� to F−→�+1 must
be compared to the estimated path from F−→� to F−→o to

F−→�+1. The translational error, δρ
o�+1o�
o�

, and rotational error,
δψo�+1o�

, are combined to obtain an overall, scalar odometry
error, Jo�+1o�

, giving

Jo�+1o�
:= 1

2

[
δρ

o�+1o�
o�

δψo�+1o�

]T

Qo�+1o�
−1

o�

[
δρ

o�+1o�
o�

δψo�+1o�

]
. (18)

The derivation is based on the same approach as in the
preceding sections but is lengthy. The result is thus im-
mediately given (for full derivation, see Carle, 2009) with
the error term written in the convenient form Jo�+1o�

=
1
2 eT

o�+1o�
Qo�+1o�

−1

o�
eo�+1o�

, where eo�+1o�
:= bo�+1o�

− Ao�+1o�
z,

and

bo�+1o�
:=

[
ρ

o�+1o�
o�

− S̄o�o

(
t̄o�+1o
o − t̄o�o

o

)
δφo�+1o�

]
, (19)

Ao�+1o�
:= [06×N Eo�+1o�

Fo�+1o�
], (20)

Eo�+1o�
:= [0 · · ·

�th term︷ ︸︸ ︷
−S̄o�o

�+1st term︷︸︸︷
S̄o�o · · · 0]

03×M

, (21)

Fo�+1o�

:=
0 · · · [

S̄o�o

(
t̄o�+1o
o − t̄o�o

o

)]× 0 · · · 0
[ ]
0 · · · −S̄o�+1oS̄T

o�o︸ ︷︷ ︸
�th term

1︸︷︷︸
�+1st term

· · · 0

6×M

.

(22)

The δφo�+1o�
term is found by converting Co�+1o�

So�oST
o�+1o

to
axis-angle form (see Appendix A).

6.5. Measured Orientation Terms, Jo�o

Estimates can be further constrained if inclinometer and/or
sun-sensor orientation measurements are available. Again
skipping to the result (for full derivation, see Carle,
2009), the conveniently expressed error term is Jo�o :=
1
2 eT

o�o
Ro�o

−1

o�
eo�o, where eo�o := bo�o − Ao�oz, and

bo�o := δφo�o, (23)

Ao�o := [03×N 03×M Fo�o], (24)

Fo�o := [0 · · ·
�th term︷︸︸︷

1 · · · 0]︸ ︷︷ ︸
M frames

. (25)

The δφo�o parameter is obtained by converting Co�oS̄T
o�o

to
axis-angle form (see Appendix A).
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6.6. Combining Terms and Optimization

With all error terms now expressed in a convenient way,
the solution to the overall minimization problem can be de-
rived. The objective function of Eq. (6) becomes

J =
N∑

j=1

(
1
2

eT
fj

Rfj
−1

o efj

)
+

M∑
�=1

N�∑
k=1

(
1
2

eT
f�,k

Rf�,k
−1

o�
ef�,k

)

+
M−1∑
�=1

(
1
2

eT
o�+1o�

Qo�+1o
−1
�

o�
eo�+1o�

)

+
M∑

�=1

(
1
2

eT
o�o

Ro�o
−1

o�
eo�o

)
, (26)

where each e term is a function of z. Using the Gauss–
Newton algorithm, it is desired to take a step, z∗, to the
minimum of the current local quadratic approximation of
J . Thus z∗ is chosen so that ∂J T /∂z = 0. The derivative of
Eq. (26) is taken with respect to z and set to zero. The re-
sult is then rearranged into the familiar linear form Bz∗ = y,
where

B :=
N∑

j=1

(
AT

fj
Rfj

−1

o Afj

) +
M∑

�=1

N�∑
k=1

(
AT

f�,k
Rf�,k

−1

o�
Af�,k

)

+
M−1∑
�=1

(
AT

o�+1o�
Qo�+1o

−1
�

o�
Ao�+1o�

)

+
M∑

�=1

(
AT

o�o
Ro�o

−1

o�
Ao�o

)
, (27)

y :=
N∑

j=1

(
AT

fj
Rfj

−1

o bfj

) +
M∑

�=1

N�∑
k=1

(
AT

f�,k
Rf�,k

−1

o�
bf�,k

)

+
M−1∑
�=1

(
AT

o�+1o�
Qo�+1o

−1
�

o�
bo�+1o�

)

+
M∑

�=1

(
AT

o�o
Ro�o

−1

o�
bo�o

)
. (28)

This is simply a linear system of equations that has a unique
solution iff det B �= 0. This singularity can be avoided
with a minimum of three unique, noncollinear features
spread anywhere in the entire chain of odometry-connected
frames.

After convergence of Gauss–Newton, B represents the
inverse covariance matrix of the estimated parameters.
Therefore, the variances of the estimates may be obtained
from the diagonal of B−1.

Using the Gauss–Newton algorithm, a solution is ob-
tained at each iteration that represents a step to the mini-
mum of the local quadratic approximation of the objective
function. A line search is then implemented, where the so-

lution, z, is repeatedly multiplied by a factor η < 1 until the
objective function decreases. This solution is used to up-
date the nominal design parameters. Convergence to a lo-
cal minimum is achieved when the relative change in the
objective function is less than Econverge.

6.7. Single-Frame Localization

It is also of interest to examine the performance of single-
frame localization. In this simplification of the multiple-
frame case, odometry measurements are not provided as
inputs to the algorithm. Therefore, the odometry terms’
contributions to the updates can be dropped, giving

B′ :=
N∑

j=1

(
AT

fj
Rfj

−1

o Afj

) +
M∑

�=1

N�∑
k=1

(
AT

f�,k
Rf�,k

−1

o�
Af�,k

)

+
M∑

�=1

(
AT

o�o
Ro�o

−1

o�
Ao�o

)
, (29)

y′ :=
N∑

j=1

(
AT

fj
Rfj

−1

o bfj

) +
M∑

�=1

N�∑
k=1

(
AT

f�,k
Rf�,k

−1

o�
bf�,k

)

+
M∑

�=1

(
AT

o�o
Ro�o

−1

o�
bo�o

)
. (30)

The Gauss–Newton algorithm is used in the same way as
before, by iteratively solving B′z∗ = y′ and updating the
nominal design parameters. Because odometry is not pro-
vided, this single-frame pose refinement is possible only if
DARCES finds a solution for the frame in question.

6.8. RANSAC

The RANSAC algorithm (Fischler & Bolles, 1981) [box (a)
in Figure 11] acts on scans individually and is used to reject
poor, outlier feature correspondences before a full align-
ment using MOGA. Other measurements, such as odom-
etry and orientation, are assumed to be inliers. The out-
put DARCES hypothesis is used to create correspondences
between global and local features. Three of these corre-
spondences are chosen at random and are called the model.
The global–local frame transformation associated with this
model is then used to search for outliers. An outlier is de-
fined as a poor correspondence for which the position er-
ror between the global–local feature pair does not obey as-
sumed Gaussian uncertainties.

Once outliers have been detected, the remaining corre-
spondences are labeled as inliers. The inlier set for a given
model is then evaluated with the same fitness metric used
in Section 5.2. It is possible to quickly test individual mod-
els because only three feature correspondences are used in
each model. The inlier set with the highest fitness is called
the consensus set. This consensus set of inliers is then used
in MOGA.
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Figure 13. Detected outliers for A08.

RANSAC is designed to operate on frames individu-
ally, not as a group tied together by odometry, because rel-
atively large odometry errors might corrupt results when
only three feature correspondences are used. Figure 13
shows RANSAC’s ability to reject outliers.

7. FIELD DATA

To test the developed localization architecture, a realistic
data set was collected from Devon Island, Nunavut, just
north of the Haughton Crater at 75◦22′N and 89◦41′W. The
area’s geological features and lack of vegetation make it a
unique Mars/Moon analog site that has attracted signifi-
cant interest from researchers (Lee, 2002; Parnell, Bowden,
Osinski, Lee, Green, et al., 2007; Wettergreen, Tompkins,
Urmson, Wagner, & Whittaker, 2005).

In total, 37 separate LIDAR scans were collected over 2
weeks using the LIDAR-tripod setup shown in Figure 14.
These scans, each made up of millions of points spread
over hundreds of meters, were used to test the single-
scan localization performance of the MOGA algorithm. The
LIDAR also produced image panoramas from an onboard,
six-megapixel digital camera to test VIPER and benchmark
MOGA.

To investigate MOGA’s full capabilities, a long-range
rover traverse was simulated by connecting 23 LIDAR
scans with real odometry data. This odometry data set was
collected by a pushcart outfitted with a variety of rover
engineering sensors as shown in Figure 15(a). The cart’s
10-km path, seen in Figure 15(b), is comparable in length
to the distance traversed by the MERs to date. The orienta-
tion of the LIDAR and cart was matched by imaging a tar-
get in both systems (see Carle, 2009). The sections to follow
describe the full data set in further detail.

Figure 14. LIDAR setup.

7.1. Maps

The global map was obtained from GeoBase, an online
repository of digital terrain data covering all of Canada.
These 3D maps are produced from stereo image pairs col-
lected from orbiting satellites. The 8.5 × 12 km map shown
in Figure 15(b) was used to localize scans on the 10-km
traverse (A01–A23). Other scans (A24–A37) were localized
with similar 100-km2 global maps for their respective ar-
eas. Map resolution and accuracy parameters are defined
in the GeoBase map files. The map’s x and y resolutions
were, respectively, 13 and 24 m. To be more compatible with
the developed algorithm, the global map was interpolated
at the smaller resolution to form a uniform grid. Therefore,
the global map x–y resolution was effectively Lxy = 13 m.
The global map’s z resolution was Lz = 1 m, and its x–y and
z positional uncertainties (i.e., the position uncertainty of a
3D point in the global map) were, respectively, σrGxy

= 14 m
and σrGz

= 13 m.
The local maps were collected with an Optech

ILRIS3D-ER LIDAR mounted on a pan-tilt unit as seen in
Figure 14. Designed as an accurate, long-range mapping
sensor, this LIDAR has a maximum range of about 1.5 km
in extended-range mode, a beam divergence of 0.00974 deg,
and a range accuracy of 7 mm at a distance of 50 m. The ver-
tical and horizontal scan resolutions were set, respectively,
to 0.03 and 0.06 deg. The vertical resolution was smaller to
compensate for the oblique scanning angle. With these set-
tings, a scan with a field of view of 360 deg in the horizontal
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Figure 15. Cart collected odometry measurements between LIDAR scan sites on a 10-km traverse over rough terrain. (a) Cart
with sensors. (b) Cart’s path.

and 20 deg in the vertical finished in about 30 min. The po-
sition uncertainty of a 3D point in the local map was esti-
mated to be σrLM = 0.5 m. Although most scans were quite
good, having good visibility of the surrounding terrain as
shown in Figure 16(a), some scans were heavily occluded
as in Figure 16(b).

7.2. Odometry Measurements

An implementation of VO was used for the odometry mea-
surements in this study. Owing to space restrictions, only

the basic outline of the algorithm will be presented here.
In general, this implementation is similar to other stereo
VO algorithms based on sparse feature correspondences
(Howard, 2008; Konolige et al., 2007; Maimone, Cheng, &
Matthies, 2007; Nistér, Naroditsky, & Bergen, 2006).

Stereo pairs of 640 × 480 images are captured, cor-
rected for lens distortion, and rectified so that they model a
pair of pinhole cameras with parallel optical axes. For each
stereo pair, SURF features (Bay et al., 2006) are used for
both matching (across stereo pairs) and tracking (over time).
Feature descriptor matches between consecutive images

Figure 16. Examples of LIDAR scan with (b) good visibility (A08) and (a) poor visibility due to nearby, occluding terrain (A02).
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Figure 17. The elevation reported by real-time kinematic (RTK) GPS over the course of the traverse.

are used as candidate tracks, and RANSAC is used to si-
multaneously reject outlier feature tracks and produce a
coarse motion estimate. This implementation used preemp-
tive RANSAC as it will, on average, produce the best set of
inlying tracks given a fixed computational budget (Nistér,
2005). The coarse motion estimate is used to initialize an it-
erative numerical solution for the change in pose between
consecutive images. The numerical solution used in this
study was an implementation of the sliding window VO
described by Konolige et al. (2007). Both the vehicle poses
and feature positions are solved for using sparse BA, a max-
imum likelihood solution for motion and structure given
all of the measurements (Hartley & Zisserman, 2000; Triggs,
McLauchlan, Hartley, & Fitzgibbon, 2000). To maintain con-
stant computational complexity over the entire traverse, the
solution is limited to the feature observations made from a
small subset of poses, some of them fixed and some free in
the optimization. These results use five poses fixed and four
poses free. The cart was also equipped with an inclinometer
set to an output rate of 1 Hz. To ensure consistency over the
entire traverse, an extended Kalman filter is used to fuse
the inclinometer measurements with the VO estimates.

The VO results reported here are not as accurate as
those reported by Konolige et al. (2007). However, the com-
parison is not direct for two reasons. First, Konolige et al.
(2007) also integrated heading measurements from a high-
quality gyroscope. Second, the performance is dependent
on the data set itself. The cart captured 49,413 stereo im-
ages over a 10-km traverse through a wide range of differ-
ent terrain from highly textured rock fields to nearly tex-
tureless sandy areas. As shown in Figure 17, the platform
experienced significant 3D motion throughout the traverse
and, due to lack of suspension on the cart, the video is quite
choppy over rough terrain. Despite the limited accuracy of
the VO implemented in this paper, it can still be of benefi-
cial use to the MOGA algorithm, as will be demonstrated
in later sections.

7.3. Orientation Measurements

Orientation measurements were used to improve the per-
formance of the localization algorithm and were a required

input for the VIPER algorithm. Heading measurements for
A01–A25 were obtained from a sun sensor (see Enright
et al., 2009), and those from A26–A37 were computed
knowing the GPS and local positions of a distant target
(see Carle, 2009). Measurements from both methods were
assumed to have uncertainty σγ = 1 deg. Roll and pitch
were effectively measured by leveling the LIDAR with its
built-in, two-axis bubble levels. In practice, these param-
eters would be measured with an inclinometer. The un-
certainties in roll and pitch were, respectively, taken to be
σα = σβ = 1 deg. The covariance matrix for all orientation
measurements was therefore Rorient = (1 deg π

180 )21.

7.4. Ground Truth

Ground-truth x–y position measurements, ρx,t and ρy,t ,
were obtained from a Garmin GPSMAP 76CSx with uncer-
tainty σρx,t

= σρy,t
= 10 m after averaging measurements for

several minutes.

8. RESULTS

This section presents results from field tests and discusses
the performance of the developed algorithm. A summary
of the various parameters input into the algorithm is pre-
sented in Table II.

The algorithm was coded in Matlab R2007a and run
on a system with an Intel Core2 2GHz CPU and 2 GB
of RAM. With these parameters, about 500 global features
were detected within 10 s on the 100-km2 global map. Lo-
cal map feature detection was typically slower and took
about 1 min per scan. A low number of features in a frame
tended to make it more difficult to find a DARCES so-
lution. A DARCES solution was typically found within
10 min. A single-frame run of MOGA converged in 2 min
after about 10 iterations. Most of these 2 min was spent
within RANSAC, because all possible models of features
were tested. Overall, localization for a single scan from fea-
ture detection to pose refinement was completed in under
15 min. With outliers already rejected, a multiframe MOGA
run converged within 30 s.
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Table II. Summary of key input parameters; all uncertainties correspond to one standard deviation.

Parameter Value Section Description

Lxy 13 m 7.1 Global map x, y resolution
Lz 1 m 7.1 Global map z resolution
σrGxy

14 m 7.1 Global map x, y uncertainty
σrGz

12 m 7.1 Global map z uncertainty
σrLM 0.5 m 7.1 Local map x, y, z uncertainty
σα, σβ, σγ 1 deg 7.3 Roll, pitch, heading uncertainties
n 5 cells 4 Dilation window radius
Ddetect 60 m 4 Minimum distance between detected features
Eflat 0.5 m 4 Feature flatness threshold
Ezdev 24 m 5.2 z-deviation filter threshold
Eα,Eβ,Eγ 5 deg 5.2 Orientation filter thresholds
Ntop 5 hypotheses 5.2 Number of top hypotheses for validity check
Dvalid 50 m 5.2 Maximum distance between valid hypotheses
Econverge 10−10 6.6 MOGA convergence threshold
η 0.9 6.6 MOGA line search factor

8.1. Single-Frame MOGA

In this configuration, local frames were localized indi-
vidually. There was a stochastic aspect to the DARCES
algorithm because control points were randomly selected.
It was therefore necessary to demonstrate robustness by
running 100 randomly seeded trials for each of the 37 lo-
cal maps.

Figure 18 summarizes single-frame localization perfor-
mance. Although MOGA outputs full position and orien-
tation estimates, only position performance is discussed
because orientation is assumed to be well-known from
measurements (e.g., sun sensor, inclinometer). Most trials
showed position error well below 50 m, a good result con-
sidering that prior position was known to be only within a
100-km2 map. This initial map size could be even larger, but
the algorithm would be slowed and might eventually cease
to produce a DARCES solution as the number of competing
hypotheses grows. A simple solution to this problem would
be to use a higher resolution global map, which would al-
low more features to be detected.

Note that some frames produced no DARCES solu-
tion. This occurred when features were either out of the
LIDAR’s range (flat areas; e.g., A10, A13) or too close to the
LIDAR (canyons; e.g., A02, A20–A23). In canyon-like set-
tings, nearby hills occlude much of the view, leaving few
features for the rover to detect. Furthermore, a nearby de-
tected peak is more likely to be a poor representation of
the true peak, which would be occluded at close range (see
Figure 7).

MOGA also calculates uncertainties for all output es-
timates. Figure 19 shows these uncertainties for a sample
trial. The uncertainties produced by the algorithm seem to
be reasonable in most cases. A few data points lie outside
the estimated uncertainty, indicating that the uncertainty in
some features’ positions was underestimated.

Figure 20 shows how the number of features in a frame
determines the output localization error and uncertainty.
Position error seems to be weakly, negatively correlated to
the number of features in a frame but is more likely a func-
tion of the quality of features. For example, well-resolved
peaks would produce much lower error than flat hilltops.
Uncertainty in position is clearly inversely correlated to the
number of features. The selection of a scan site with many
good-quality features is beneficial to position accuracy and
uncertainty.

8.1.1. Performance without Heading

The performance of sample trials with and without head-
ing was compared for each frame. To ensure a fair com-
parison, the same inputs were given to both test cases in-
cluding the order for selection of control points. Figure 21
shows that the input of heading measurements into the al-
gorithm can lead to signficant improvements. With head-
ing information, the hypothesis search space can be greatly
reduced, leading to an improvement in computation time.
It also increases the chances of finding a DARCES solution
(see frames A01, A24, A25, and A29) because hypotheses
interfering with the selection of a solution might be dis-
carded. However, the inclusion of heading does not appear
to significantly affect the accuracy of position estimates.

8.1.2. VIPER Comparison

To evaluate the performance of the single-frame MOGA, it
was compared to the VIPER algorithm. The VIPER algo-
rithm is the most thoroughly tested algorithm in the litera-
ture for the localization problem investigated in this paper.
It is therefore considered to be the current state of the art.

In these comparison tests, MOGA and VIPER
were provided the same orbital maps and heading
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Figure 18. Position errors for 100 single-frame trials on all 37 scans. Mean errors for each frame are also shown.

measurements. The similarity of the input data ensures
a fair comparison of the two approaches. The original
VIPER implementation is no longer available, and so it was
necessary to reimplement VIPER (Appendix B) based on
its description by Cozman et al. (2000).

The results of these experiments show that although
VIPER was computationally less demanding, MOGA’s lo-
calization peformance was generally superior, as is evident
in Figure 22. The difference can primarily be attributed to
the use of 3D information in MOGA, because VIPER is un-
able to distinguish between areas that produce similar 2D
skylines. Additionally, VIPER uses information only at the
horizonal boundary, whereas MOGA is able to use peaks
visible below the horizon, as shown in Figure 23(a).

VIPER outperformed MOGA in a small number of
cases, notably for scan A13. MOGA found no solution for
this scan because the LIDAR was located in a relatively flat
region where good features were out of range. Meanwhile,
the lack of occlusions nearby allowed VIPER to detect the
horizon many kilometers in the distance. This result sug-
gests that there are situations in which VIPER should be
used instead of MOGA, particularly where the nearby ter-
rain is flat but distant features are visible from camera im-
ages as depicted in Figure 23.

However, there are still scenarios where neither al-
gorithm performed very well, such as the canyon loca-
tions of A02 and A20–A23. In these canyons, only short-
range features are visible to either LIDAR or camera due to
occlusions, which makes localization much more difficult
for both algorithms. Furthermore, the canyon walls were
thinner than the resolution of the digital elevation model
(DEM) and therefore are not accurately represented in the
global map. In the end, a number of common factors limit
the performance of both algorithms:

• DEM quality: Higher quality and higher resolution
DEMs will increase the ability of these algorithms to dis-
cern position.

• The amount of topographic relief in the area: Areas
with little topographic relief do not provide useful infor-
mation for either algorithm. This may explain the high
failure rate observed for this implementation of VIPER
compared to the results reported by Cozman et al.
(2000); the panoramas gathered in the Atacama desert
as part of that work2 show large-scale relief along the
horizon—much greater relief than exhibited on Devon
Island.

2http://www.cs.cmu.edu/∼VIPER/AtacamaMission/
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Figure 21. Significance of heading measurements for sample trials: (a) Time required to find a DARCES solution. Bars for frames
12, 16, 24, 25, and 29 were truncated for clarity. (b) MOGA position errors obtained when a DARCES solution was found.
.

• The amount of topographic relief within the range of
the sensor: VIPER is limited to using the topographic
relief visible on the horizonal boundary, whereas MOGA
is limited by the range of the LIDAR.

• Availability and quality of the platform orientation
estimate: Relatively small errors in the orientation of
the platform can cause large differences in the per-
ceived features. Although this may be mitigated through
careful attention during data collection, future work in
this area should address the problem of uncertainty in
orientation.

8.2. Multiframe MOGA

In the multiframe configuration, VO measurements be-
tween scans A01 and A23 were available to MOGA. This
allowed for a single, large MOGA optimization to be exe-
cuted. DARCES transformation estimates served as initial
guesses for MOGA. However, if a particular frame did not
have a DARCES solution, its transformation was estimated
using VO to the next-closest, solved frame. As shown in

Figures 24 and 25, MOGA can now produce localization
estimates for frames with no DARCES solution using in-
formation from all available measurements in the chain of
frames. VO estimates are provided in Figure 25 for two
cases. One uses the VO algorithm’s output orientation es-
timates, and the other replaces these with absolute orien-
tation measurements from the sun sensor and inclinome-
ter. It should also be made clear that the VO algorithm was
given the rover’s ground-truth pose for frame A01, whereas
MOGA used no ground truth whatsoever.

Note the significant improvement in the estimates as
more information is given to the estimator. With absolute
orientation measurements, VO reduces its error from up
to several kilometers to a few hundred meters. With abso-
lute position measurements provided by matched features
in MOGA, the error can be further reduced to as low as a
few meters.

Multiframe MOGA clearly performs better than VO
over long ranges, which is to be expected because MOGA
uses additional information (i.e., orbital map and LIDAR
scan) to produce its estimates. However, VO information
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can still be useful when used in MOGA. In Figure 26,
single-frame MOGA is compared to multiframe MOGA.
For the presented single-frame results, position estimates
are obtained for frames with no DARCES solution (i.e.,
A02, A13, A20–23) using VO to the nearest solved frame.
The resulting average errors for single-frame and multi-
frame MOGA are, respectively, 29.6 and 22.1 m. This sig-
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Figure 25. VO, MOGA, and ground-truth positions. Odome-
try was given ground-truth position and orientation for frame
A01, but MOGA was not. Connecting lines do not indicate the
intermediate path and serve only as a visual aid.

nificant improvement can be attributed not only to VO
measurements but also to feature sharing between frames.
Sharing features allows a given frame to use local features
from other nearby frames with common global correspon-
dences to improve estimates. VO will benefit MOGA only if
the uncertainties of VO and feature position measurements
are correctly modeled. If not, the algorithm will improp-
erly weight measurements and possibly arrive at a poorer
solution.

9. FUTURE WORK

There are many interesting avenues to investigate for fu-
ture work. A different feature detector, such as a curvature-
based detector, could be used to more accurately estimate
the positions of features. The main challenge would be in
dealing with the occlusions in the LIDAR scans. It would
also be interesting to quantitatively understand the effect
of orbital map resolution on feature detection and localiza-
tion accuracy.

For the rover to successfully localize, it must collect
a rich set of global and local features with many valid
correspondences. The LIDAR should therefore not scan
in canyons where nearby hills could occlude distant ter-
rain features. Future research could investigate how to au-
tonomously select scan sites that would be favorable to
localization. Once the developed algorithm is coded in a
more efficient language, the scan itself could become the
bottleneck in the procedure. Therefore, the scan patterns
should also be optimized to scan more intelligently (e.g.,
improving the control of the scan resolution).

DARCES could be sped up in a number of ways as ex-
plained by Chen et al. (1999). Odometry information could
be used in DARCES for further gains in efficiency and
accuracy. The translational odometry data could serve as
another filter on position between two frames. If carefully
implemented, this would greatly reduce the initial hypoth-
esis search space. Odometry could also allow features to
be shared between frames during DARCES. This would
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Figure 26. Single-frame MOGA position errors compared to multiframe MOGA errors. Single frame uses odometry to the nearest
solved frame when a given frame has no DARCES solution.

be useful for frames with low numbers of features. For
example, a frame with only two features would not nor-
mally have a DARCES solution. If odometry were available,
a third feature could be used from a nearby frame to satisfy
the conditions for a solution.

This paper has shown that VIPER and MOGA can
complement one another in certain situations. It would
therefore be interesting to develop a localization frame-
work that combines the best aspects of the two algorithms.
For example, VIPER analyzes images that may contain in-
formation many kilometers out of a LIDAR’s range. In con-
trast, LIDAR scans used by MOGA provide much more de-
tailed information of the nearby terrain and do not depend
on lighting conditions.

10. CONCLUSION

This research has produced a number of novel contri-
butions. A global localization technique was developed
that matches rover-based LIDAR scans to an orbital eleva-
tion map using DARCES feature constellations. MOGA, a
multiple-frame, least-squares alignment technique, was de-
signed that uses feature position, orientation, and odome-
try measurements to refine pose estimates. The architecture
was also validated by testing it on a realistic Mars/Moon
analog data set from Devon Island, Nunavut. The devel-
oped algorithm was tested against the current state of the
art, VIPER, and showed significant improvement. With ad-
ditional work, it is believed that the architecture presented
in this paper could be used to autonomously localize a
rover over long ranges with high accuracy.

11. APPENDIX A: AXIS-ANGLE CONVERSION

Given a rotation matrix, C, it is desired to convert it to an
equivalent rotation about an axis â := [a1 a2 a3]T over an

angle ω. These are given by

ω := arccos
(

trace(C) − 1
2

)
, (A1)

a1 := C23 − C32

2 sin(ω)
, (A2)

a2 := C31 − C13

2 sin(ω)
, (A3)

a3 := C12 − C21

2 sin(ω)
. (A4)

Therefore, the axis-angle vector representation of C is
a := ωâ. Hughes (1986) discusses this procedure in greater
detail.

12. APPENDIX B: AN IMPLEMENTATION
OF THE VIPER ALGORITHM

This appendix describes an implementation of VIPER, an
algorithm that attempts to estimate the position of a rover
within a DEM through an exhaustive search. A skyline
segmented from a panoramic image is compared to sky-
lines rendered at every place in the map, and the clos-
est match is considered the most likely position. Cozman
(1997), Cozman and Krotkov (1997), and Cozman et al.
(2000) describe various implementations of VIPER. The lat-
ter of these is investigated in this paper for comparison
against MOGA. The algorithm assumes that the heading of
the platform is well known (from celestial and gravitational
observations as in Enright et al., 2009) and that the platform
is leveled before collecting the image panorama.

In this section, altitude will be used to refer to the height
above mean sea level and elevation to the angle between the
true horizontal plane and a point of interest on the skyline.
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12.1. Skyline Segmentation

The commercial photo stitching software AutoPano Pro3

was used to generate a panoramic image from images
captured at each scan location. In the resulting panorama,
horizontal pixels correspond to azimuth angle and vertical
pixels (up from the center of the image) correspond to ele-
vation angle.

Each skyline profile is manually segmented from the
panoramic image. The resulting curve is sampled to ren-
der a single elevation angle for each azimuth angle. Let mφ

be the elevation sample at azimuth φ. The segmented sky-
line is sampled at φ = 0 . . . 359 deg, and these samples are
stacked into a column,m:

m :=

⎡
⎢⎣

m0
...

m359

⎤
⎥⎦ .

12.2. Skyline Rendering

This section describes the skyline rendering algorithm. Let
p be a position of interest in the DEM:

p :=
[
x

y

]
,

where x and y are the UTM easting and northing coordi-
nates, respectively. The DEM may be modeled as a func-
tion, z(p), which maps positions to altitudes. The skyline-
rendering algorithm produces skyline elevations sampled
in 1-deg azimuth increments. Each elevation sample, sφ , is
rendered separately.

To determine the elevation seen at a particular azimuth
angle, the DEM is sampled along a line in the viewing di-
rection. Given the azimuth angle, φ, the maximum number

3Available at http://www.autopano.net

of samples, N , and a step size, δp, a set of sampled altitudes,
S(φ,p, δp, N ), is built from the DEM:

S(φ,p, δp, N ) = {aj |j = 0 . . . N},
where

aj = z

(
p+ j

[
cos φ

sin φ

]
δp

)
− d(jδp).

The step size is set based on the resolution of the DEM, the
number of steps is set to ensure that the DEM is sampled
to its edge, and the function d(·) is a dip correction for the
curvature of the planet. Figure B1(a) shows the geometry of
the dip correction. For an individual altitude sample, aj , the
horizontal distance from the viewing location is jδp. From
this distance the dip of the horizon may be computed as

d(jδp) = r −
√

r2 − (jδp)2,

where r is the radius of the planet.
Finally, using the height of the sensor above the

ground, h, each altitude sample, aj , is converted to an el-
evation angle, ej :

ej = atan2(aj − (a0 + h), jδp).

The maximum elevation, sφ , determines the elevation at the
horizon:

sφ = maxj (ej ).

Figure B1(b) depicts the geometry of the elevation calcula-
tion.

A value of sφ is calculated for azimuth angles φ =
0 . . . 359 deg, and these are stacked into a column, s:

s(p) =

⎡
⎢⎣

s0
...

s359

⎤
⎥⎦ .
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To speed up the algorithm, the skylines are prerendered at
every grid cell in the DEM. The rendering can take a long
time (days for each DEM), but it has to be performed only
once, and it speeds up the position estimation algorithm by
several orders of magnitude.

12.3. Position Estimation

The position estimation algorithm uses a Bayesian ap-
proach to determine the most likely position in the map
given the skyline. The estimator computes the posterior
probability of the rover being at every place in the map,
p(p|m). This value is expanded using Bayes’ rule:

p(p|m) = p(m|p)p(p)
p(m)

. (B1)

The measurement model is

m = s(p) + δm, (B2)

where p is the true location of the rover and the measure-
ment noise, δm, is assumed to be drawn from a zero-mean
Gaussian distribution:

δm ∼ N (0,R).

This model is simplified by assuming that the form of R is

R = σ 21,

where σ is the measurement’s standard deviation. Under
this model, the likelihood of m given p is

p(m|p) = 1√
det(2πR)

exp
(

−1
2

(m− s(p))TR−1(m− s(p))
)

.

(B3)

This observation likelihood equation is different from the
one published in Cozman et al. (2000), which uses

√
2πσ 2

as the denominator in the fraction on the left. Using this de-
nominator, p(m|p) is no longer a valid probability density
function. Equation (B3) has been used in this implementa-
tion as it is true to the noise model.

The prior likelihood, p(p), encapsulates prior knowl-
edge of the rover’s position. In this paper’s implementa-
tion, which evaluates a single-image panorama against a
DEM [Cozman et al. (2000) refers to this as the dropoff prob-
lem], every position in the map is assumed to be equally
likely.

Finally, the likelihood of the skyline measurement,
p(m), is expanded as

p(m) =
∑
ρ∈K

p(m|ρ)p(ρ), (B4)

where ρ is a position in the DEM and K is the set of all such
positions.

Rather than finding the single maximum-likelihood so-
lution for Eq. (B1), the VIPER algorithm uses an interval-

valued model to represent imprecision in the model equa-
tions. Specifically, the algorithm considers a range of val-
ues of σ in Eq. (B3), [σl, σu]. Within this range, Eq. (B3) is
minimized or maximized at σl , σu, or σ 2 = [m− s(p)]T [m−
s(p)]. Let the terms p(m|p) and p(m|p) represent the mini-
mized and maximized values of Eq. (B3).

From the bounds of Eq. (B3), an upper bound, p(p|m),
and a lower bound, p(p|m), on the posterior probability
may be defined:

p(p|m) = p(m|p)p(p)

p(m|p)p(p) + ∑
ρ �=p p(m|ρ)p(ρ)

, (B5)

p(p|m) = p(m|p)p(p)
p(m|p)p(p) + ∑

ρ �=p p(m|ρ)p(ρ)
. (B6)

From these bounds on the posterior, the estimate p� is de-
fined to be the position in the DEM that maximizes p (p|m).
This estimate defines a region, R,

R(p�) = {p|p(p|m) ≥ p(p�|m)}, (B7)

of all estimates that are essentially equivalent under the
interval-valued model. The number of points in R is a mea-
sure of the confidence of the estimator, with large regions
corresponding to low confidence.

To determine σl and σu in the original VIPER study,
they compared the skyline measurements from a calibra-
tion image panorama to n elevation measurements gath-
ered with a theodolite, setting

σl =
√

(n − 1)s2/χ2
n−1,2.5%, (B8a)

σu =
√

(n − 1)s2/χ2
n−1,97.5%, (B8b)

where s is the sample standard deviation and χ2
n,α is the

χ -square distribution with n degrees of freedom and a sig-
nificance level of α. No theodolite measurements were col-
lected with this data set so σl and σu are determined by a
comparison of the segmented skylines to the rendered sky-
lines for a subset of the data. For each panorama, 20% of
the other panoramas are randomly selected to compute σl

and σu.

12.4. Putting the Pieces Together

Using the definitions in the above sections, the VIPER algo-
rithm may be described step by step for a single panorama:

1. Build the image panorama.
2. Segment the skyline in the image, sampling the curve at

1-deg increments to produce a vector of elevation mea-
surements, m.

3. Randomly select 20% of the other panoramas to calcu-
late σl and σu using Eqs. (B8a) and (B8b).

4. Evaluate the upper and lower bound measurement
likelihoods, p′(m|p) and p′(m|p), at every place in
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Figure B2. Typical VIPER results shown for location A34: (a) Triangles represent the locations in R under the interval-valued noise
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the DEM using Eq. (B3) at σ = σl , σ = σu, and
σ 2 = [m− s(p)]T [m− s(p)]. If this last value of σ is out-
side of the region [σl, σu], it is not used.

5. Evaluate the upper and lower bound posterior proba-
bilities, p(p|m) and p(p|m), at every place in the DEM
using Eqs. (B5) and (B6).

6. Find p� = maxp(p(p|m)).
7. Evaluate the confidence of the estimate by finding the

region of equivalent estimates, R, using Eq. (B7).

A typical result is shown in Figures B2(a) and B2(b).
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