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Abstract

Place recognition is a core competency for any visual si-
multaneous localization and mapping system. Identifying
previously visited places enables the creation of globally
accurate maps, robust relocalization, and multi-user map-
ping. To match one place to another, most state-of-the-art
approaches must decide a priori what constitutes a place,
often in terms of how many consecutive views should over-
lap, or how many consecutive images should be considered
together. Unfortunately, depending on thresholds such as
these, limits their generality to different types of scenes. In
this paper, we present a placeless place recognition algo-
rithm using a novel vote-density estimation technique that
avoids heuristically discretizing the space. Instead, our ap-
proach considers place recognition as a problem of contin-
uous matching between image streams, automatically dis-
covering regions of high vote density that represent over-
lapping trajectory segments. The resulting algorithm has
a single free parameter and all remaining thresholds are
set automatically using well-studied statistical tests. We
demonstrate the efficiency and accuracy of our methodol-
ogy on three outdoor sequences: A comprehensive evalua-
tion against ground-truth from publicly available datasets
shows that our approach outperforms several state-of-the-
art algorithms for place recognition.

1. Introduction and Related Work

Robust relocalization based on place recognition forms
the backbone of many Simultaneous Localization And
Mapping (SLAM) frameworks both for robotics and mobile
device applications. Image-based place-recognition frame-
works process a stream of images capturing the continuous
change of scene appearance as the user navigates through
space. Rather than modeling this appearance change as a
continuum, existing algorithms introduce an artificial dis-
cretization of the world into places, both inside the database

Figure 1: The proposed algorithm creates, transforms and de-
composes a 2D space of descriptor votes. Regions with high vote
density represent loop-closure candidates.

index and on the query side. The process of discretiza-
tion requires the manual tuning of thresholds for what de-
fines a place w.r.t. different environments (e.g. outdoor
vs. indoor). Furthermore using a fixed discretization does
not allow for adapting the place creation to the appearance
of the environment, which in many cases is key to distin-
guishing places with strong perceptual aliasing. The main
contribution of this paper is a continuous placeless place-
recognition scheme that uses descriptor-vote density esti-
mation to eliminate the arbitrary discretization and group-
ing of images into places. Instead we approach place-
recognition as a problem of continuous trajectory matching.
We find similar pieces of our path by applying a set of trans-
formations and decompositions to the 2D space of matches
between the descriptors on the query and the database side.
The underlying algorithm works on individual descriptors
instead of searching the image as one entity as commonly
done in related work. This technique is enabled by applying
a dimensionality reduction on descriptors such that they can
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be searched efficiently at scale.
Bag of words based retrieval: Techniques from high-

performance image retrieval systems have inspired many
of the place recognition algorithms used in mobile phone
localization and robotics applications. Most algorithms
employ either a Bag-Of-Words (BoW) model or a voting
scheme on individual feature descriptors such as SURF [2],
BRISK [13] or FREAK [1], to find candidate images from
the database.

The BoW model, initially applied to image retrieval by
Sivic et al. [20], uses a fixed-size vocabulary as a vector
quantizer to classify descriptors of both query and database
images. The features extracted from an image are trans-
formed into a vector of classes present in the image, and this
vector is used to compare two images. The vocabularies are
commonly learned using unsupervised density estimation
techniques such as k-means, k-medoids or hierarchical k-
means [19]. Depending on the properties of the descriptors,
the estimated distribution and respective classes might how-
ever not be a good representation of the high-dimensional
descriptor space, leading to misclassifications. Binary de-
scriptors provide real-time performance and are therefore
a prefered choice for BoW based frameworks for mobile
phone and robotic applications. Even though the mean of
a set of binary descriptors is not well defined, Galvez et
al. [8] successfully applied k-means++ clustering to binary
descriptors which were converted to floating point values
during the clustering followed by rounding to form the fi-
nal centroids. The resulting BoW vectors were then used
in a term-frequency-inverse-document-frequency (TFIDF)
scheme.

Voting and efficient nearest neighbor search: Voting-
based systems, such as our method, directly search the near-
est neighbors of query image descriptors to identify poten-
tial matches to the database. Jegou et al. [11] discussed and
demonstrated the performance gain of voting-based sys-
tems, which results from the avoidance of artifacts inherent
to the quantization step needed by BoW. While voting is
more computationally expensive, Stewenius et al. [22] re-
cently demonstrated that such algorithms scale to billions
of images.

Both methods described above rely on the concept of
distance in the space of image descriptors as a fundamen-
tal building block. In voting-based systems, this is needed
for efficient and precise k-nearest-neighbor (kNN) search.
Given the computational constraints on mobile devices we
would like to use binary descriptors produced by the BRISK
algorithm [13] in our application. However, for binary de-
scriptors, such a kNN algorithm is not straightforward to
design due to the high dimensionality and the nature of
the binary descriptor space [24]. Consequently, we project
binary BRISK description vectors into a dimensionality-
reduced real-valued space, which allows accurate and fast

kNN search. This is similar to the technique used by Bosse
et al. [4] for laser keypoints.

Forming images into places: Until recently nearly all
place-recognition frameworks separated the image-stream
from the camera into single frames or small groups of im-
ages which are fed to an image retrieval pipeline. For exam-
ple, the FABMAP algorithm by Cummins et al. [5] initially
considers places to be individual images. During operation
it takes a sequence of non-overlapping images and deter-
mines if each one belongs to a new or a revisited place. It
does so by computing and comparing the probability of a
binary BoW vector being generated by either a previously
seen place or by a new place represented by a background
model. The main limitation of this approach is that, on the
next visit through the same environment, the correspond-
ing image might be captured “between” two places gen-
erated during the first visit. Both places now attract half
of the probability mass and therefore neither reaches the
thresholds for successful data association. This situation
gets worse from visit to visit as more “new places” from
neighboring locations are added to the database. Galvez
et al. [8] proposed to mitigate this issue by forming “is-
lands” of places by grouping query results that are close in
time or have been found to belong to the same place be-
fore the voting step. A similar approach was proposed by
Mei et al. [15] and more recently by Stumm et al. [23],
where places are formed by grouping query results based
on covisibility; images that share more than 50% features
are grouped before the final voting step, where the former
uses TFIDF and the latter evaluates the FABMAP model.
Murphy et al. [17] proposes to cluster images based on
place topics to narrow the search space. An approach which
breaks up the discretization of places is the work by Mad-
dern et al. [14] who employ a particle filter for SLAM and
the FABMAP model to evaluate the probabilities of observ-
ing landmarks based on entire pieces of trajectory using a
motion model. The approach closest to a “placeless” rep-
resentation is the work by Milford et al. [16] who perform
correlation-based matching on entire sequences of down-
sampled images, instead of looking at individual images or
descriptors. Given, however, that the images are collected
using time-based sampling, the trajectories have to be tra-
versed with similar velocities on both visits. It would be
straightforward, however, to apply the distance-based sam-
pling strategy from our proposed algorithm to mitigate this
problem in the sequence matching of Milford et al. [16].

The proposed work contrasts with the discussed ap-
proaches in several ways:

• We propose to sample images by approximate distance
along the trajectory, rather than by covisibility or time.

• We do not compute a BoW representation, but rather
add individual descriptors into our search index.

• We formulate the place recognition problem as a 2D



density estimation in vote space where we take into
account the kNN votes of every query descriptor.

• We find loop-closure candidates using statistical tests
instead of thresholds. The query evaluation does not
rate single images but integrates loop-closures on dy-
namically defined regions.

• Queries are not done on a single image basis, but con-
sider the votes of all images in parallel as a batch on
pieces of trajectory.

Most existing state of the art approaches that aim at break-
ing up the discretization of places require setting a threshold
on the number of images to combine into a place. Values
for these thresholds are commonly not valid for all environ-
ments or use heuristics which require manual tuning. These
thresholds are however not the only ones commonly used in
place-recognition pipelines, from which many are implicit,
such as: number of classes for K-means, starting values for
k-means, depth and width of the hierarchical trees, training
data for vocabularies, spacing of images along the trajectory
etc. In contrast, the proposed algorithm limits the number
of parameters to a minimum where all but two are derived
from statistical tests on the data.

2. Methodology

During training, our algorithm requires typical image se-
quences captured from a moving camera in which we track
BRISK descriptors. Tracked and non-tracked features are
used as exemplars to produce a transformation that reduces
the descriptor dimensionality and provides a distance test
equivalent to the likelihood ratio test statistic to distinguish
true matches from a background distribution (Section 2.1).

During testing, the input to our algorithm is a sequence
of images and odometry information. The odometry in-
formation is only needed to specify the distance along
the path so it can come from high-fidelity visual-inertial-
odometry [10] or low-fidelity wheel odometry. We extract
BRISK descriptors from the input images and build a KD-
tree from the projected descriptors. After construction, we
query the k-nearest neighbours of each descriptor and map
each match to a 2-dimensional point indexed by the respec-
tive distances (query × database) along the path. Regions
of high density in this space represent good candidates for
loop closures.

We rotate the match space into “placial” indices such that
path-aligned match regions correspond to vertically or hor-
izontally aligned regions of high density. These regions can
then be easily segmented by recursive axis-aligned splits us-
ing statistical tests on the vote densities. This decomposi-
tion is data driven and performed at query time. Each seg-
mented region of sufficient density indicates a correspon-
dence between two places along the path.

2.1. Descriptor dimensionality reduction

We learn a linear projection that transforms the binary
descriptors xi to a lower dimensional space, while maximiz-
ing the separability between matching and non-matching
descriptor pairs. We take the technique which was used by
Bosse et al. [4] for laser keypoints and apply it to binary
BRISK [13] descriptors. The projection is designed such
that the L2 distance between descriptors in the projected
space matches the Likelihood Ratio Test (LRT) statistic.
The LRT is the hypothesis test with the maximum power
for a given maximum false-positive rate [18].

Under the assumption that the descriptors are i.i.d. the
central limit theorem suggests that a sufficiently large num-
ber of samples will be uniformly distributed. Therefore the
difference between descriptors can be modeled with a multi-
variate Gaussian distribution, which in return leads to the
conclusion that the likelihood ratio test statistic, Λ(·), can
be computed as follows:

Λ(xa − xb):=
|ΣU |1/2

|ΣM |1/2
e{−0.5(xa−xb)TΣ−1

M (xa−xb)}

e{−0.5(xa−xb)TΣ−1
U (xa−xb)}

(1)

where Σ−1
M and Σ−1

U are the respective covariances com-
puted from a training set of matched (M ) and unmatched
(U ) descriptor differences and xa and xb are individual de-
scriptor vectors. Taking the logarithm on both sides allows
us to drop the scaling constants and simplify the computa-
tion. The resulting distance, D, satisfies the LRT [4] since:

−log(Λ(xa, xb))∝(xa − xb)T (Σ−1
M −Σ−1

U )(xa − xb) (2)
=(xa − xb)T (AT A)(xa − xb) (3)
=‖Axa − Axb‖L2︸ ︷︷ ︸

=:D

(4)

The matrix A1 is the linear transformation of the descrip-
tors to a subspace where the LRT is a simple threshold on
Euclidean distances. After applying this linear descriptor
transformation we perform dimensionality reduction by re-
moving the dimensions with the lowest signal-to-noise ra-
tio. This increases the efficiency of the kNN search without
significant loss of precision as shown in Figure 2. We obtain
the required training data of matching and non-matching
descriptors from feature tracking in a visual SLAM frame-
work.

2.2. Placeless descriptor vote integration

To allow a placeless representation of the environment,
we do not follow the standard BoW model for image re-
trieval. Instead we use a descriptor based voting scheme in
which we perform kNN search in the low dimensional de-
scriptor space we obtained from the descriptor transforma-
tion and dimensionality reduction. For the moderate sized

1A is computed using the singular value decomposition.
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Figure 2: The maximum Matthews correlation coefficient (MCC)
score as a function of different projection matrices (top) and the
dimension of the projected space (bottom). Our method for learn-
ing the projection matrix outperforms a random projection matrix
(error bars show 1 σ of 10 different random matrices), while the
difference between matrices learned from unrelated datasets has
little influence. Most of the descriptor space can be captured in
a 10 dimensional subspace. Higher dimensions of the projected
descriptor entail little gain in performance, while drastically in-
creasing the complexity of the kNN search.

databases (≈10,000 key-frames) a direct search for nearest
neighbors using the libnabo [7] KD-Tree library performs
well. Therefore we do not need to apply any approximations
using hashing or vocabulary-based quantization for find-
ing nearest neighbors. The algorithm processes a dataset
as batch in which all descriptors are queried against the
database. The kNN from this search form samples in a 2D
space of votes (spanned by the query-descriptors and their
matches). An online approach is feasible, but left for future
work. In the following sections of this paper, we describe
the transformations and decompositions of this space which
allow us to find regions in which the vote density is high
and thus signals a closeness in appearance between differ-
ent trajectory segments.

2.3. Trajectory aligned vote space segmentation

To evaluate the place-recognition problem in batch form,
we retrieve the k-nearest neighbors from the database for
each descriptor2. Initially, the votes for each feature match

2See experimental section 2.4 for the impact of k.

can be represented by points in a 2D space indexed by
the times (or frame number) of the corresponding images.
However, since the individual votes are quite sparse and
noisy, we would like to aggregate nearby votes in this space.
If the places were predefined, then the vote space could
be represented as a matrix where each element contains
the sum of all the votes contributing to the corresponding
place match. The places would need to be big enough such
that suffiently many votes are captured and matching places
could be distinguished from non-matching places that re-
ceive outlier votes. If the places, however, are too large,
then the vote score would be unduly influenced by non
matching parts of the places. (See Figure 3 for an illustra-
tion of the process). Since we do not predefine any places,
we treat the votes as observations from a 2D continuous
probability density in the space of place matches. The two
dimensions of this space are spanned by the database and
the query descriptors as the path is traversed. Matching
places should have a higher density of votes whereas non-
matching regions should have a low density of randomly
matching votes. To mitigate artifacts to varying velocities
while traversing the path, we remap the coordinates from
time to distance along the path, d, and assign each feature
a weight, w, such that the sum of weights over a unit dis-
tance is constant. Each vote is weighted by the product of
the weights from the matched descriptors. Aggregations of
votes in this space correspond to integrals over rectangular
regions. One can see in Figure 3b that large integration win-
dows will include a significant fraction of background or
false positive votes unless the windows would be aligned to
capture the density of the underlying distribution. However
finding the parameters of this alignment without employing
ad-hoc thresholds is hard. Therefore we define the “pla-
cial” coordinates, (x, y) such that axis aligned integration
windows can model large sections of matches from places
traveling in the same direction (vertically aligned) or travel-
ing in opposite directions (horizontally aligned) (Figure 3c).
In summary, when query descriptor a votes for database de-
scriptor b, we compute the weight, wab, and placial coordi-
nates, (xab, yab), as

wab = wa ∗ wb, xab = da + db, yab = |da − db|. (5)

Given this distribution of weighted votes expressed in pla-
cial coordinates we employ a decomposition of the space
that allows matching corresponding pieces of the trajectory
as described in the following section.

2.4. Determination of place sizes at query time

In order to find an appropriate window size for vote inte-
gration which is both dynamically determined at query time
and takes into account the local density of the background
process, we suggest a recursive tree-based segmentation al-
gorithm driven by statistical tests. Employing statistical



a) b) c) d)

Figure 3: The vote space at different stages in our algorithm: We start with the raw landmark votes a) full, b) callout. Axis aligned
integration windows (red) don’t capture the density well. The vote space is transformed to allow axis aligned integration (c), the coloring
denotes the number of descriptors per image. After the tree decomposition using statistical tests, the loop-closure candidates are separated
and scored by their weighted vote density d).

tests that take into account the local density has the advan-
tage that we do not introduce a dependency on the number
of detected features or the scene appearance. Thereby re-
gions with richer structure (resulting in stronger visual fea-
tures) are equally weighted to other parts of the trajectory,
avoiding bias in the loop candidates towards scenes with
rich texture which many other approaches suffer from.

We aim to test the null hypothesis, H0, that the land-
mark votes within a particular region of the query-result
belong entirely to one of the two classes (foreground or
background). If the test fails, we split the region into
sub-regions. Natural non-parametric test statistics are the
Kolmogorov-Smirnov, Cramer von Mises, and Kuiper’s
statistic types [6, 12] which are all based on the deviation of
the empirical distribution from the theoretical distribution.

We found the Kolmogorov-Smirnov (KS) statistic is well
suited in identifying the best place to split the integration
window, but the very similar Kuiper’s (K) statistic is better
for determining whether or not to split the window. For a
given integration region within the rotated space, we evalu-
ate the statistics for the x placial coordinates and y coordi-
nates separately to determine the optimal axis and location
to split the region. Let Vx = {xi|i = 1 . . . n} be the set
of x coordinates of all votes inside the region. We assign
a weight, wi, as in Eqn. (5) to each vote to account for the
appearance of the scene. We then compute Fn(x), the em-
pirically weighted cumulative distribution function (CDF)
for the x-axis as

Fn(x) =
1∑
i wi

n∑
i

wiIxi≤x, (6)

where Ixi≤x is the indicator function which is equal to 1 if
xi ≤ x or 0 otherwise. A similar derivation yields the CDF
of the y axis. The Kolmogorov-Smirnov statistic for a given
CDF F (x) is

Tx = sup
x

|Fn(x)− F (x)|, (7)

where sup is the supremum of the set of differences, and we
compare to the uniform distribution

F (x) = (x− xmin)/(xmax − xmin). (8)

As can be seen from Figure 4 the value of Tx is maxi-
mal at the boundary of background and foreground distri-
butions (indicated by the black vertical line), and indicates
the optimal place to split the space into subregions. Apart
from the splitting location, we would also like to determine
which axis to optimally split next. Since the value of the
KS-statistic is somewhat dependent on the location of the
boundary between distributions, we instead use Kuiper’s
statistic [12] to find the best dimension to split. Kuiper’s
statistic is related to the KS-statistic, but is invariant to
cyclic shifts of the data:

Kx = sup
x

(Fn(x)− F (x))− inf
x

(Fn(x)− F (x)) . (9)

Where inf is the infinimum of the set of differences. The
axis with the larger K is split at the location of the max-
imum T . See Figure 4 for a depiction3 of this process.
We continue recursively splitting the space at the dimen-
sion given by the Kuiper’s statistic (and location given by
the KS-statistic) until the following condition is met:

√
N max(Kx,Ky) < Ks, (10)

where Kx, Ky denote the Kuiper statistics for the x and y
axis respectively and N denotes the number of samples in
the current region. Figure 5 shows that the parameter has
a wide area of values with high performance over different
datasets.

After the K-statistic suggests no further splitting of the
distribution, the resulting regions in the vote space represent
candidates for overlapping trajectory pieces. The mean vote

3The votes in this plot are down sampled by a factor of 10 for viewing
convenience.



Figure 4: The Kolmogorov-Smirnov (KS) and Kuiper statistics per axis for a region of the vote distribution. The KS statistic identifies
the location of the optimal split, where as Kuiper’s statistic is used to chose the dimension to split on. The colors in the vote distribution
correspond to the vote weights (logarithmically scaled), which we use to compute weighted empirical CDFs.
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Figure 5: Influence of two main parameters on the maximum
MCC score. The number of votes per query descriptor (top): Addi-
tional votes boost noise and subsequently cause false alarms. The
density stopping threshold Ks of the vote decomposition process
(bottom): Lower density thresholds correspond to over segmenta-
tion of loop-candidate regions.

density in these regions can be used as a score to determine
which candidates should be kept for further consideration,
e.g. passed to a subsequent geometric-verification step.

3. Experiments

3.1. Experimental setup

We compare our algorithm against a BoW pipeline using
BRISK [13] descriptors and TFIDF scoring similar to the
implementation of [8] and against several voting-based al-
gorithms using projected descriptors4 where we aggregate
the votes on a per image basis [22, 11], on places formed
by images close in time [8] and covisibility [23]. We do
not compare to the FABMAP 2.0 [5] algorithm itself or ap-
ply its probabilistic weighting to the raw votes such as done
for instance by Stumm et al. [23] or Glover et al. [9]. We
see this as an additional step which can be applied to the
votes independent of the way the votes got accumulated into
places. While FABMAP can perform data-association to
merge observations from multiple visits into a place, we see
this output different than the raw retrieval evaluated in this
paper, and therefore not directly comparable. Instead, we
point readers to the FABMAP evaluation done by Glover et
al. [9] who used two of the datasets that are also evaluated in
this paper. Similarly we also do not use geometric verifica-
tion in the performance evaluation for any of the algorithms
as it would make the experiments be less informative w.r.t.
the proposed method. Clearly any actual implementation

4All voting-based algorithms use the same number of votes k per query
descriptor.



should make use of the improved performance offered by a
geometric verification step.

We use three standard public outdoor datasets with
moderate trajectory lengths namely: “New College”
(panoramic, Ladybug, 2.4 km) [21], “Malaga Urban Ex-
tract 10” (stereo forward facing, 5.8 km) [3] and “St. Lucia”
(mono forward facing, webcam, 17.6 km) [9]. To the best
of our knowledge we chose parameters for all algorithms
for them to give the best performance and then fixed them
for all datasets.

To generate ground truth loop-closure candidates we use
GPS and, if available, odometry information to determine
when the same part of the trajectory is revisited. For the
Malaga and St. Lucia datasets we directly use the GPS
measurements as they are mostly accurate. For the New
College dataset however the GPS has many outliers and is
often interrupted. We therefore apply a robust least-squares
optimization to fuse the GPS measurements with the avail-
able wheel-odometry to get a more accurate and complete
trajectory.

3.2. Precision recall

To mitigate the difficulty of deciding which parts of the
ground truth trajectory should definitely be loop closures
and which should not, we employ two evaluation thresh-
olds: We identify true positives using pairs of points on
the ground-truth trajectories that are closer than a thresh-
old gtnear. Parts of the trajectory that are farther apart than
a second threshold gtfar are marked as true negatives. The
pairwise parts of the trajectory whose distance falls between
the two thresholds are “don’t care” regions and not used in
the evaluation since we cannot be certain whether those sec-
tions will induce reliable loop closures or not. Given that the
Malaga dataset has a front-facing camera, we additionally
mask out all regions where the same trajectory is traversed
in the opposite direction.

Besides the proposed “Placeless” algorithm, the
precision-recall (PR) plots (Figure 6) show different meth-
ods for aggregating images to places. For the algorithm
“Single image place” we evaluate every image as an indi-
vidual place. This is similar to the approaches found in im-
age retrieval [22, 11]. The performance of an algorithm that
forms places from images close in time [8] is denoted by
“Time based place”. Forming places by accumulating votes
from images connected in the covisibility graph [23] corre-
sponds to the curve “Covisibility based place”.

Due to the dynamic determination of place sizes, the
placeless approach consistently reaches the highest values
with very high recall even at 90% precision. We would like
to point out the remarkable 93% recall at 90% precision on
the ‘St. Lucia’ dataset.

4. Conclusion and Future Work
We have presented a method for batch placeless place-

recognition using projected binary descriptors and a kNN
voting scheme with a loop-candidate segmentation using
statistical-tests. Instead of scoring individual images spaced
by time, we formulate place recognition as a continuous
2D probability density estimate in the space of matches
along path distance. We apply voting and scoring based
on all query descriptors jointly and drop the widely used
keyframe-based discretization of places. This allows us to
handle different sizes of places, indoor and outdoor envi-
ronments as well as perceptual aliasing in a continuous and
placeless way. Our approach contrasts with many existing
works that aim at a “placeless” representation where covis-
ibility and a set of thresholds are used to control the num-
ber of images to combine for modeling the appearance of
a scene. Instead we rotate the vote space to obtain a “pla-
cial” index, in which we can segment and integrate places
without considering boundaries between individual images.
This way we can build a truly placeless place-recognition
which at query time determines the number of descriptors
to combine from both query and database for best represen-
tation of the scenes’ appearance. Statistical tests control the
segmentation of the vote space into loop-candidates. In fact
these tests take into account the local background vote dis-
tribution and hereby capture the local structure of the envi-
ronment in a better way than what a global threshold could
deliver.

While this work focused on a batch method for place-
recognition, we will focus on the development of an online-
method for future work.
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Figure 6: Comparison against related work on the ‘New College’, ‘Malaga’ and ‘St. Lucia’ datasets for precision p ∈ [0, 1] on a log scale.
The maximum MCC is given inside parentheses in the legend and its location denoted by a circle.

[6] D. A. Darling. The kolmogorov-smirnov, cramer-von mises
tests. The Annals of Mathematical Statistics, pages 823–838,
1957. 5

[7] J. Elseberg, S. Magnenat, R. Siegwart, and A. Nüchter. Com-
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