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Abstract— OpenGV is a new C++ library for calibrated real-
time 3D geometric vision. It unifies both central and non-central
absolute and relative camera pose computation algorithms
within a single library. Each problem type comes with minimal
and non-minimal closed-form solvers, as well as non-linear
iterative optimization and robust sample consensus methods.
OpenGV therefore contains an unprecedented level of com-
pleteness with regard to calibrated geometric vision algorithms,
and it is the first library with a dedicated focus on a unified
real-time usage of non-central multi-camera systems, which
are increasingly popular in robotics and in the automotive
industry. This paper introduces OpenGV’s flexible interface
and abstraction for multi-camera systems, and outlines the
performance of all contained algorithms. It is our hope that
the introduction of this open-source platform will motivate
people to use it and potentially also include more algorithms,
which would further contribute to the general accessibility of
geometric vision algorithms, and build a common playground
for the fair comparison of different solutions.

I. INTRODUCTION

Even in times of powerful and freely available localization
frameworks that rely on temporal model predictions, the
purely geometric computation of a camera pose remains a
fundamental problem that requires robust and accurate real-
time solutions. The most prominent class of applications
is formed by large-scale 3D reconstruction frameworks [1],
which are capable of transforming sets of unordered images
into 3D models of entire cities. The absence of temporal or
topological information linking the images demands a purely
geometric solution of camera poses prior to photometric
error minimization. However, even classical visual-SLAM
algorithms [2], [3] or modern visual-inertial solutions [4]
that typically rely on temporal predictions given by a motion
model require geometric vision algorithms for any of the “not
so normal” tasks, such as bootstrapping, loop-closure, pose
recovery, or relocalization. Further potential applications
exist for multi-robot localization and mapping. In summary,
we can easily identify a persistent need for geometric pose
computation algorithms in all domains where structure-from-
motion plays a role, such as localization and mapping, object
tracking, object modelling, geolocalization, robot extrinsic
calibration, augmented reality, and photogrammetry, to name
just a few.

Although the need for geometric vision algorithms is
ubiquitous within robotics and computer vision, no existing
software library for camera pose computation covers all
interesting cases. There are many generic structure-from-
motion libraries available, such as OpenCV [5], VXL (de-
rived from TargetJR and IUE), Gandalf (mainly homogra-

phy estimation), LibMV, Bundler, CMVS (using bundler),
and OpenMVG. These mostly aim at offering complete
pipelines for 3D reconstruction or dense model generation,
covering all processing steps from interest point extraction
down to large-scale non-linear optimization. However, the
geometric camera pose computation algorithms provided by
these packages never go beyond the standard single-camera
problems of space resectioning, homography estimation, or
the computation of the fundamental or essential matrix1.

The goal of the OpenGV project is to introduce a novel
common open-source platform for accessing, comparing, and
collecting all types of efficient camera pose computation
algorithms. In contrast to many other libraries, OpenGV is
a pure 3D library that aims at highly efficient solutions to
calibrated problems, thus mainly targeting applications in
the robotics, automotive, and consumer electronics indus-
tries that require real-time solutions to absolute and relative
camera pose computation 2. Besides a more focussed scope,
the main difference to existing frameworks is that OpenGV
is not limited to single camera applications. The palette of
algorithms is completed by including solutions for both cen-
tral and non-central camera systems. Central camera systems
are characterized by a single viewing origin—all rays from
the camera originate at a single point—wheras non-central

1VXL additionally contains methods for solving the orthogonal procrustes
problem, and Libmv also contains methods for pose estimation with
unknown focal length.

2By “real-time”, we understand here the capability of an algorithm to—
even if embedded into an iterative RANSAC scheme—support processing
at common camera frame-rates (>10 Hz).

Fig. 1. Illustration of a camera c and a viewpoint vp (in blue). The camera
is a single reference frame with bearing vector measurements (in red). The
viewpoint has multiple cameras, each one containing its own bearing vector
measurements and an individual transformation to the viewpoint frame.



camera systems have rays originating from multiple points.
Figure 1 illustrates the difference between these two cases.
Non-central algorithms are more robust than central algo-
rithms in the case of multi-camera systems [6], and thus are
of utmost importance for real-time 3D vision tasks in modern
robotics and automotive applications where multi-sensor or
multi-camera systems are ubiquitous. OpenGV contains a
flexible interface designed for painless interoperability with
existing libraries, and therefore is preferably understood as a
complementary extension to existing frameworks rather than
a competition.

OpenGV is the first library to present a unified approach
to geometric vision not depending on the specifics of the
employed imaging system. The library operates directly in
3D and abstracts the camera projection system by using
transformed image information only. It employs a general-
ized description of multi-camera systems, and is therefore
applicable to almost any—either central or non-central—
camera. It is the first library to provide implementations
that solve the highly complicated problems of computing
the absolute or relative pose of a generalized camera. Al-
though the benefits of the latter in multi-camera structure
from motion are regularly praised in the literature, those
algorithms have so far only been presented without accom-
panying implementations. OpenGV now makes it possible
to put the credo of using many cameras as one [7] into
practice by providing the required building blocks to migrate
well-known single camera structure-from-motion concepts
to multi-camera scenarios. OpenGV is written in C++, and
provides multiple efficient solutions to identical calibrated
absolute and relative camera pose computation problems as
well as a Matlab interface. The framework makes it easy
to compare algorithms against each other and provides a
suitable benchmark-tool for future algorithm development.
Our goal is for OpenGV to become a commonly accepted
geometric vision library for camera pose computation and
automatic benchmarking, thus making it easy for future
algorithms to be included and avoiding the problem that algo-
rithms posted as independent code fragments on laboratory
web-pages may have different interfaces and therefore be
difficult to compare.

The remainder of this paper is structured as follows. Sec-
tion II highlights OpenGV’s generalized approach towards
multi-camera systems as well as all contained algorithms.
In Section III, we highlight some important implementation
details. In Section IV, we present the comparative evalua-
tion of all contained algorithms obtained by our automatic
Matlab-based benchmarking tool.

Access: The entire library is hosted as an open-source
project on github and can be forked under

https://github.com/laurentkneip/opengv
The library also contains its own webpage with an exhaustive
documentation of the interface and numerous examples. It
can be accessed under

http://laurentkneip.github.io/opengv
All results in this paper can be easily reproduced by installing
the library and executing the respective benchmark files.

II. OPENGV
This section introduces OpenGV. It starts by outlining

the employed generic description of multi-camera systems
used by all algorithms within the library. It then gives a
brief introduction to all the problems that can be solved, and
finally introduces some important details and novelties about
OpenGV’s sample-consensus functionalities.

A. Unified description of input data

OpenGV employs a generalized description of camera
systems allowing an application to nearly any optical system.
The description is centered around an elegant representation
of a multi-camera system, without losing the ability to
represent fully generalized camera models. An example for
the latter is for instance given by a catadioptric camera
looking at an arbitrarily shaped mirror.

The specifics of particular camera models are hidden
from the interface by representing each image measure-
ment as a 3D bearing vector: a unit vector originating at
the camera center and pointing toward the landmark. This
can be accomplished easily for most practically relevant
cameras—including perspective, dioptric, and catadioptric
imaging devices—given that the calibration parameters of
a suitable central camera model are known. Each bearing
vector has only two degrees of freedom, which are the
azimuth and elevation inside the camera reference frame. 3D
bearing vectors are—next to normalized image coordinates—
a standard choice in computer vision. They provide the ad-
vantage of being able to represent omnidirectional landmark
observations.

As OpenGV assumes calibrated cameras, landmark ob-
servations are always given in form of bearing vectors
expressed inside a camera frame. In the present context,
a camera therefore denotes a camera frame with a set of
bearing vectors, all pointing from the origin to landmarks.
The possibility of also describing multi-camera systems that
cannot be represented by a single camera center is then given
by the introduction of viewpoints, which allow OpenGV to
transparently handle both central and non-central cameras.
A viewpoint can contain an arbitrary number of central
cameras each one having its own landmark observations
(e.g. bearing vectors). Figure 1 illustrates a viewpoint with
3 cameras. A practical example of a viewpoint would be
the set of images and related measurements captured by
a fully-calibrated, rigid multi-camera rig with synchronized
cameras. The viewpoint represents a single (multi-image)
snapshot captured by multiple rigidly connected cameras at
the same time and hence it can be parametrized by only
one single pose (e.g., the viewpoint). Each camera has a
known transformation to the viewpoint frame. In the central
case the viewpoint simply contains a single camera with an
identity transformation. The most general case—the general-
ized camera—can also be described by the viewpoint; each
bearing vector would then have its own camera and related
transformation. In fact, the bearing vectors along with the
individual camera-to-viewpoint transformations are nothing
but alternative representations of Plücker line vectors.
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Fig. 2. An overview of the absolute and relative pose computation problems included in OpenGV. All problems can be tackled with either minimal or
non-minimal closed-form solvers, as well as within non-linear optimization and robust estimation frameworks. Known variables are bearing vectors fi in
red, world points pi in black, or transformations between the cameras in multi-camera scenarios (the position of cameras inside the viewpoint are given
by vi). Each algorithm solves for either absolute or relative transformation parameters (t and R). w represents the world frame, c a camera frame, and
vp a viewpoint frame containing multiple cameras, as outlined in Figure 1.

As further outlined in Section III, OpenGV implements
the “adapter pattern” [8] to define a single interface for
accessing viewpoints and bearing vectors according to the
above description. Users can leave their internal datastruc-
tures unchanged, and interact with the OpenGV algorithms
through the implementation of a single adapter class.

B. Overview of the included problem solvers

The main purpose of OpenGV is to provide a set of
algorithms to compute the pose of a viewpoint, meaning its
position and orientation. OpenGV is able to handle both the
absolute and the relative case. In the absolute pose situtation,
OpenGV computes the pose of a viewpoint in the world
reference frame from a number of correspondences between
bearing vectors and 3D points expressed in a world frame
(2D-3D correspondences). In the relative pose situation,
OpenGV computes the pose of a viewpoint with respect
to another viewpoint given a number of correspondences
between bearing vectors in two different viewpoints (2D-2D
correspondences). As summarized in Figure 2, the library
provides central as well as non-central solutions to each
of these problems, as well as minimal and non-minimal
variants. The library therefore provides an unprecedented

completeness and unification of calibrated geometric camera
pose computation algorithms.

The central absolute pose problem consists of finding the
pose of a viewpoint with a single camera given a number
of 2D-3D correspondences between bearing vectors in the
camera frame and points in the world frame. The problem
seeks the transformation encoded by the position tc of the
camera seen from the world frame and the rotation Rc from
the camera to the world frame. OpenGV currently hosts a
minimal variant using only two points in case the rotation is
known (P2P [9]), the minimal P3P solvers presented in [10]
and [11], and the n-point solver presented in [12].

The non-central absolute pose problem consists of finding
the pose of a viewpoint given a number of 2D-3D cor-
respondences between bearing vectors in multiple camera
frames and points in the world frame. The problem seeks the
transformation encoded by the position tvp of the viewpoint
seen from the world frame, and the rotation Rvp from the
viewpoint to the world frame. OpenGV includes the state-
of-the-art minimal and non-minimal algorithms presented in
[6], denoted gP3P and gPnP.

The central relative pose problem then consists of finding
the pose of a viewpoint with a single camera with respect



to a different single camera viewpoint given a number of
2D-2D correspondences between bearing vectors expressed
in the respective camera frames. The problem seeks the
transformation encoded by the position tcc′ of the second
camera seen from the first one and the rotation Rc

c′ from
the second camera back to the first camera frame. OpenGV
currently has its greatest variety of solutions in the central
relative pose computation domain. The extent reaches from
a minimal variant using only two points in case the rotation
is known (2pt [9]), a two-point solver for the case of a pure
rotation change, an n-point solver for relative rotation, the
five-point algorithms presented in [13], [14], and [15]—the
latter one solves for rotation immediately—the seven-point
algorithm [16], and the eight-point algorithm [17], to the very
recent n-point solution presented in [18], which shows for the
first time the ability to solve relative pose as an eigenvalue-
minimization problem. Note that [13], [14], the seven-point
algorithm, as well as [17] can be applied for more than 5,7,
or 8 points as well.

Finally, the non-central relative pose problem consists of
finding the pose of a viewpoint with respect to a differ-
ent viewpoint given a number of 2D-2D correspondences
between bearing vectors in multiple camera frames. The
problem seeks the transformation encoded by the position
tvpvp′ of the second viewpoint seen from the first one and
the rotation Rvp

vp′ from the second viewpoint back to the
first viewpoint frame. There is currently only one method
for solving this complicated problem in the library, which
is the 17-point algorithm presented in [19]. It can be used
with an arbitrary number of points, and has the advantage
of remaining robust in certain degenerate situations that
previous linear generalized relative pose algorithms ignored.

The set of available methods is completed by n-point
non-linear optimization methods for both central and non-
central absolute and relative pose computation, as well as
a few triangulation and point-cloud alignment methods (e.g.
[20]). All algorithms—except the triangulation methods—
are also made available inside a generic sample consensus
framework, which currently includes the most basic and
popular RANSAC approach presented in [21].

Since the entire library operates in 3D, we also need a
way to compute and threshold reprojection errors in 3D
within RANSAC. OpenGV looks at the angle θ between
the original bearing-vector fmeas and the reprojected one
frepr. By adopting a certain threshold angle θthreshold, we
constrain frepr to lie within a cone of axis fmeas and of
opening angle θthreshold, as illustrated in Figure 3. The
threshold-angle θthreshold can be easily approximated from
classical reprojection error-thresholds ψ expressed in pixels
by using the focal length l, and θthreshold = arctan ψ

l .
OpenGV uses an efficient implementation of this threshold,
which we will describe here. The most efficient way to
compute the angle between bearing vectors is given by taking
the scalar product of fmeas and frepr, which equals to cos θ.
Since this value is between -1 and 1, and we actually want
an error that minimizes to 0, we use ε = 1 − fTmeasfrepr =
1− cos θ to express a reprojection error. The threshold error

is therefore given by

εthreshold = 1− cos θthreshold = 1− cos(arctan
ψ

l
). (1)

Fig. 3. OpenGV computes reprojection errors in 3D by considering the
angle θ between the measured bearing vector fmeas, and the reprojected
one frepr .

C. RANSAC with multi-camera systems

OpenGV contains a special adapter that is able to hold
multiple sets of bearing-vector correspondences originating
from pairs of cameras originating from different viewpoints.
The correspondences in this adapter are accessed via a
composite-index built from a pair-index (referring to a spe-
cific pair of cameras), and a correspondence-index (referring
to the correspondence within that camera-pair). This formu-
lation of pairwise correspondences arises in many practical
problems such as:

• non-central relative pose problems that involve two
viewpoints originating from motion-estimation with a
multi-camera rig. In the situation where the cameras are
pointing in different directions, and where the motion
between the viewpoints is not too big (a practically
relevant case), the correspondences typically originate
from the same camera in both viewpoints. We therefore
can do a camera-wise grouping of the correspondences
in the multi-camera system. Figure 4 illustrates this
situation with four camera-pairs.

• central multi-viewpoint problems. By multi-viewpoint
we understand here problems that involve more than two
viewpoints. As indicated in Figure 5, a problem involv-
ing three viewpoints for instance allows to identify three
camera-pairs as well. The number of camera-pairs in an

Fig. 4. Correspondences originating from 4 camera-pairs in two viewpoints
(black, green, blue, and orange camera).



Fig. 5. Multi-viewpoint example with three central viewpoints. It gives
rise to the three camera pairs (c, c′), (c′, c′′), and (c′′, c). The first pair
has a set of correspondences originating from points p1 and p4, the second
one from p2 and p4, and the third one from p3 and p4.

n-view problem amounts at most to the combination of
2 out of n, meaning n(n− 1)/2.

The benefit of keeping track of the pair-wise correspon-
dences between cameras becomes clear when considering
a random sample-consensus scheme. When computing the
relative pose of a non-overlapping multi-camera system with
small viewpoint-change, the most straightforward solution
consists of simply applying RANSAC and drawing random
samples from a single set containing all feature correspon-
dences. The downside of this approach is that we might
not necessarily sample a balanced number of points from
each camera pair. This is especially bad in situations where
the cameras are pointing into different directions, because
we potentially lose the benefit of computing the pose with
omni-directional landmark observations and—in the worst
case—the solution collapses back to the single camera case.
It is well known that the latter is actually an ill-conditioned
problem, where the disambiguation between rotation and
translation induced disparity in the image plane is far from
trivial. It moreover renders the scale of the problem unob-
servable, and thus ultimately renders multi-camera solutions
degenerate. By keeping track of the groups, we can easily
ensure homogenous sampling of correspondences over the
different camera-pairs. Concerning the multi viewpoint case,
one could of course solve a central relative pose problem
for each camera-pair individually. However, the simultaneous
access of correspondence groups becomes useful here when
attempting a joint solution of multiple relative poses by ex-
ploiting constraints over loops of Euclidean transformations,
which should have identity rotation and zero translation.

OpenGV therefore includes a custom RANSAC mech-
anism and dedicated adapters that are able to operate on
multiple sets of grouped correspondences. It ensures an
evenly distributed sampling over all cameras. While this
might at first appear as a minor implementational techni-
cality, a deeper reflection quickly shows that there is also a
potential trap behind this approach, namely in the situation

where one of the images is actually more affected by outliers
than another one. The multi-sample consensus mechanism is
therefore preferably extended by an adaptive part that modi-
fies the number of samples drawn from each set towards best
increment in performance. This sampling strategy certainly
shares similarities with the GroupSac approach [22], however
differs in the fact that it maintains sampling within all groups
rather than identifying dominant groups and restricting the
sampling to them.

From a theoretical point of view, the approach is best
explained by first recalling the original functionality of the
RANSAC algorithm. Let p denote the desired probability of
the algorithm chosing at least one set containing only inliers
during one of all the iterations. Let n denote the number
of samples needed for instantiating a hypothesis. Now let
w denote the probability of one sample being an inlier. We
have w = number of inlier points

total number of points = y
z . When drawing n samples,

the probability of all points being inliers is wn, and the
probability that at least one of the points is an outlier is
therefore given by 1 − wn. After k iterations, the probility
that in each iteration at least one outlier has been sampled
goes down to (1− wn)k, and by definition this needs to be
equal to 1− p. This finally leads to the well-known formula
introduced by Fischler and Bolles [21] for computing k, the
number of iterations required to satisfy a given p:

k =
log(1− p)
log(1− wn)

. (2)

The situation changes when considering samples drawn
from multiple sets of correspondences. In this case, we define
a per-set probability of drawing an inlier, which is wi = yi

zi
,

with i ∈ {1, ...,m} and m being the number of sets (e.g.
camera-pairs). If we draw ni samples from correspondence
set i, the final law for computing the remaining number of
iterations changes to

k =
log(1− p)

log(1−
∏
i=1..m w

ni
i )

. (3)

The question now is, which strategy—depending on the ni—
should we choose? The equation arising from (3) considering
pairwise correspondence sets and including the term∏

i=1..m

wni
i =

∏
i=1..m

(
yi
zi

)ni

, (4)

or the vanilla version in (2) that includes the term

wn =

(∑
i=1..m yi∑
i=1..m zi

)∑
i=1..m ni

. (5)

In general, we want this term to be maximal, which causes
the required number of iterations to go down. Some simple
testing reveals that—in case of homogeneous sampling—(5)
is bigger or equal to (4), which suggests that the best way
of sampling the points is completely random. It is also easy
to see that (4) becomes bigger than (5) when pushing the
sampling towards the set with highest wi, in case the latter
are not equal.



The problem is that this statistical analysis does not
consider the fact that the accuracy of computing a pose with
homogeneously distributed points is in general higher, which
in turn increases the probability of finding the correct inliers,
and thus also reduces the number of iterations.

While a further investigation of the sampling strategy
would certainly go beyond the scope of this paper, we restrict
ourselves here to an experimental proof of the benefit of
homogeneous sampling in balanced situations. The results
are provided in Section IV.

III. IMPLEMENTATION

OpenGV depends on the open-source linear algebra tool-
box Eigen, as well as the standard library extension boost.
Both are header-only libraries, and are readily available for
most architectures. All methods in OpenGV accept a variable
called an adapter as a function-call parameter. Algorithm
calls in OpenGV are based on the adapter pattern [8].
Adapters hold the algorithm input (e.g. landmarks, bearing-
vectors, poses, multi-camera configuration, and correspon-
dences) in any user specific format (or references to the
alike) and they are responsible for converting the data
from this format into the format required by OpenGV. This
happens either on demand, or—better—when constructing
the adapter. The unified access outlined in Section II is then
enforced by deriving all adapters from a base class that
defines the methods used by the algorithms to access the data
in OpenGV format. There are three adapter base-classes:

• AbsoluteAdapterBase, the base-class for adapters
holding 2D-3D correspondences for absolute-pose
methods,

• RelativeAdapterBase, the base-class for adapters
holding 2D-2D correspondences for relative-pose meth-
ods, and

• PointCloudAdapterBase, the base-class for
adapters holding 3D-3D correspondences for point-
cloud alignment methods.

The adapter pattern gives the library great flexibility.
Users only have to implement the above adapters for the
specific data-format they are using, and can then access the
full functionality of the library. Adapters for Matlab mex-
arrays are already included, and further adapters such as for
instance an adapter for OpenCV keypoint and match-types
and a camera model are already planned. A mex-function
that exposes all algorithms to Matlab is provided as well.
The mentioned benchmark-tool is implemented in Matlab,
and uses this interface in order to apply the compiled C++-
functions to simulation data created in Matlab. The results
are provided in the following section.

IV. BENCHMARK

The algorithms in OpenGV have been used in several
projects and perform all reasonably well. Since multiple
solutions to identical problems are comfortably made avail-
able, OpenGV provides an unprecendented playground for
geometric vision algorithms to be compared against each
other. In the following, we present the results generated

by our automated benchmark tool. Anyone can reproduce
and modify them by just installing the library and using
the corresponding Matlab-files, which eases the choice of
algorithm for future users. Note that the results generated
by OpenGV algorithms are not guaranteed to be totally
equivalent to the results presented in the original papers as
code for many published algorithms is not available. The
present results are based on our best-effort reimplementations
of the algorithms included. As this is an open-source project,
we invite others to contribute by improving a given algorithm
in the library or extending the library with new algorithms.

Figure 6 shows the accuracy of most algorithms. It indi-
cates the mean and median error of the computed rotation
(norm of difference between the axis-angle representation of
the ground truth and the recomputed rotation) as a function
of measurement noise. The value for each noise-level and
algorithm is averaged over 5000 random problems. Each
problem consists of randomly chosen landmarks having a
distance between 4 and 8 to the world frame origin, and
a randomly chosen viewpoint with a maximum distance of
2 to the origin, as well as a random orientation. In the
relative case this will define the second viewpoint, with
the first one being kept at the world frame origin. In the
non-central case, we additionally create a random multi-
camera system with 4 cameras each one having a maximum
distance of 0.5 to the viewpoint origin. Noise is added to the
measurements by extracting the orthogonal plane of each
bearing vector, normalizing the current noise-level using a
focal length of 800, adding random noise in the orthogonal
plane, and renormalizing the resulting perturbed bearing
vector. The analyzed noise-levels reach from 0 to 5 pixels.
All random numbers are drawn from uniform distributions.
The analyzed solutions are restricted to those solving for
the entire pose, because the accuracy of other algorithms
(e.g. P2P, 2pt) depends additionally on the accuracy of the
“known” part. If an algorithm has a solution multiplicity, the
benchmarks currently do an automatic selection of the best
solution based on comparison to groundtruth. As expected,
non-linear iterative minimization of the reprojection error
outperforms all other solutions in each type of problem.

Regarding central absolute pose, the direct approach P3P
(Kneip) presented in [10] shows a minor improvement in
robustness compared to traditional two-step approaches such
as P3P (Gao) [11]. The EPnP algorithm [12] has superior
robustness too, and returns valuable results even in case of
using only 6 correspondences (minimum). In the non-central
case, the GP3P algorithm performs very well, however can
easily face a situation with almost parallel bearing vectors,
which renders the position unobservable. The GPnP algo-
rithm has poor robustness, especially when using only a few
points. The behavior in the position estimate is a bit better
(not shown), but it can still be concluded that—despite of
the important recent progress in computational efficiency
presented in [6]—the GPnP problem still leaves room for
further investigations.

In the central relative pose situation, it can be observed that
the most efficient algorithms—the 7pt [16] and the 8pt [17]



TABLE I
EXECUTION TIME OF ALL CAMERA POSE COMPUTATION METHODS

Algorithm Type Ref. Execution time [ms]
P2P Abs. central [9] 0.0003
P3P (Kneip) Abs. central [10] 0.0033
P3P (Gao) Abs. central [11] 0.0115
EPnP (50 points) Abs. central [12] 0.1015
2-point Rel. central [9] 0.0002
5-point (Stewenius) Rel. central [13] 0.1045
5-point (Nister) Rel. central [14] 0.2479
5-point (Kneip) Rel. central [15] 0.9432
7-point Rel. central [16] 0.0261
8-point Rel. central [17] 0.0264
Eigensolver Rel. central [18] 0.0831
GP3P Abs. noncentral [6] 0.0837
GPnP (50 points) Abs. noncentral [6] 0.5270
17-point Rel. noncentral [19] 0.0912

solvers—are less resilient to noise than the minimal solvers,
even if using more points. Since working on calibrated
cameras—and thus “normalized” data—the algorithms cur-
rently dispose of any explicit data normalization techniques.
5pt (Stewenius) [13] is the most accurate non-iterative solver,
and returns almost identical accuracy than the iterative
eigensolver [18] when using the same number of points (not
shown). The latter, however, returns a unique solution, and
potentially outperforms the polynomial solvers in terms of
computational efficiency. Note that not all iterations were
taken into account. The sanity checks performed by the 5pt
(Kneip) algorithm [15] are quite strict, and therefore–in some
rare ill-posed experiments—might reject all found solutions.
In the non-central relative pose case, the linear 17pt algo-
rithm [19] again performs far from optimal under noise. It is
also potentially affected by a singularity, namely when the
rotation between the viewpoints approaches identity, which
renders the scale unobservable. One of the next goals in
OpenGV therefore is an implementation of the polynomial
solver presented in [23].

Table I summarizes the execution times of all non-iterative
algorithms. All experimental results in this paper have been
generated on an Intel Core 2 Duo with 2.8 GHz. P3P (Kneip)
out-performs P3P (Gao) because the latter is a two-step
approach with an iterative SVD of a 3x3 matrix in the second
step. This could be done in closed-form as well, however
only at the cost of reduced accuracy. EPnP and GPnP as well
as all other n-point methods in OpenGV have at most linear
complexity in the number of points. The 7pt and the 8pt
solvers are far more efficient than the polynomial solvers.
The relatively high execution time of 5pt (Nister) [14] is
mainly related to OpenGV’s implementation of the Sturm
root bracketing approach, which can certainly be improved.
The only iterative algorithm in the list is the eigensolver,
which is included because—compared to plain non-linear
optimization—it converges comparably easy to the global
minimum. The indicated number, however, is for a low
number of iterations only. It is only a qualitative statement of
the efficiency of the eigensolver, which has constant iteration
time independently of the number of features, and therefore
drastically outperforms nonlinear optimization.
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Fig. 7. Histogram of RANSAC-iterations in non-central relative pose
computation depending on the sampling strategy. The experiment considers
the performance of different sampling strategies in the presence of camera-
wise grouping of correspondences. The homogeneous sampling strategy
samples a balanced number of correspondences arising from each camera,
whereas the vanilla strategy does completely random sampling.

Figure 7 finally shows the performance improvement
resulting from homogeneous sampling in non-central rel-
ative pose computation. The experiment analyzes a bal-
anced situation with similar outlier fractions in all images.
1000 random experiments are effectuated for each sampling
strategy with 0.5 pix noise and an outlier fraction chosen
uniformly between 10% and 20%. Although probabilitistics
say that completely random sampling is at least as good
if not better than homogeneous sampling, the results prove
that the gain in accuracy by drawing a balanced number of
correspondences from each camera practically leads to higher
accuracy, higher probability of finding the correct inliers, and
thus a reduced number of iterations. The mean number of
RANSAC iterations is 113 for homogeneous sampling, and
164 for completely random sampling.

V. OUTLOOK

The present paper introduced OpenGV, a novel platform
for calibrated real-time geometric vision algorithms. We
provided a comprehensive overview of the goals behind the
OpenGV-project, including use-cases, basic properties, as
well as a comparative evaluation of the contained algorithms.
OpenGV is the first library to unify state-of-the-art real-
time solutions to the outlined types of problems in a single
place, but there obviously remains space for extensions. Our
future efforts consist of adding more algorithms to the library,
thus extending the comparative benchmarks for the different
problem classes. We also hope that we can convince people
to add their algorithms to the library—no matter if they are
old or new—which could ultimately make OpenGV the place
where algorithms can be exposed to identical conditions, and
thus easily and fairly compared against each other.
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Fig. 6. Benchmark of multiple algorithms showing rotation error in function of measurement noise. The plot reflects the current status of OpenGV by
including the main closed-form and iterative optimization methods. The value for each algorithm/noise level is averaged over 5000 random experiments.
Noise levels are expressed in pixels, but internally applied on the bearing vectors’ orthogonal plane using a focal length of 800 pixels.
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