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Abstract— In order to increase accuracy and robustness in
state estimation for robotics, a growing number of applications
rely on data from multiple complementary sensors. For the best
performance in sensor fusion, these different sensors must be
spatially and temporally registered with respect to each other.
To this end, a number of approaches have been developed
to estimate these system parameters in a two stage process,
first estimating the time offset and subsequently solving for the
spatial transformation between sensors.

In this work, we present on a novel framework for jointly
estimating the temporal offset between measurements of dif-
ferent sensors and their spatial displacements with respect to
each other. The approach is enabled by continuous-time batch
estimation and extends previous work by seamlessly incorpo-
rating time offsets within the rigorous theoretical framework
of maximum likelihood estimation.

Experimental results for a camera to inertial measurement
unit (IMU) calibration prove the ability of this framework to
accurately estimate time offsets up to a fraction of the smallest
measurement period.

I. INTRODUCTION

Most methods for state estimation that fuse data from
multiple sensors assume and require that the timestamps
of all measurements are accurately known with respect to
a single clock. Consequently, the time synchronization of
sensors is a crucial aspect of building a robotic system.

The most desirable method of determining the timestamps
of all measurements is with the support of hardware, using
interrupts on a single processor to detect signal lines that
change state at each measurement time. This is the method
used for high-accuracy photogrammetry [1] but it requires
specialized hardware and increases the complexity of inte-
gration.

When hardware support is not available, the next best
option is to use software-supported time synchronization.
For example, the mapping between clocks can be learned
using the Network Time Protocol (NTP) [2] or the TICSync
algorithm [3]. This mapping then allows one to resolve the
device timestamps with respect to a common clock. However,
these methods require software support on each device and
very few (if any) off-the-shelf sensors provide this.

Our approach is targeted toward the majority of robotic
systems, where individual sensors do not support the hard-
ware or software synchronization methods described above.
In such systems, a central unit either triggers or polls
sensor readings or receives a continuous stream of fixed-rate
measurements from a sensor. Using a single clock, the central
unit timestamps this data either on arrival or when initiating a
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Fig. 1. This paper derives a unified framework for temporal and spatial
calibration of multi-sensor systems such as this visual-inertial sensor used in
the experiments. F−→w marks the inertial frame attached to a static calibration
pattern, while F−→c and F−→i show the camera and the IMU frame respectively.
By waving the sensor in front of the calibration pattern, our framework is
capable of estimating the 6-degrees-of-freedom transformation between F−→c

and F−→i as well as time offset between the two devices.

request. In this case, the delay between sensor measurements
is determined by communication delays and the internal
sensor delays—introduced either by filters or logic—as well
as stochastic delays resulting from task scheduling. After
removing stochastic effects on these fixed rate measurements
using the approach of Moon et al. [4], it is sometimes
possible to infer the delay from sensor data. This delay
is constant and can therefore be determined in an offline
calibration procedure.

Conventional discrete-time estimation techniques gener-
ally require a state at each measurement time. This makes the
estimation of temporal offsets difficult as measurement times
shift when the offsets are updated. This has led to the de-
velopment of specialized algorithms just for estimating time
offsets [5], [6], that are applied prior to spatial calibration of
the sensors.

In contrast, the continuous-time batch estimation algo-
rithm proposed by Furgale et al. [7] makes it easy to fold
time offsets directly into a principled maximum-likelihood
estimator. Although we agree with the authors of [6] that
jointly estimating uncorrelated quantities may potentially
impair results, we believe that, given accurate measurement
models, the optimality implications of maximum likelihood
estimation extend to our approach. Consequently, we can
achieve the highest accuracy by incorporating all available
information into a unified estimate.

The results presented in section V support this assump-
tion, suggesting that the gain in accuracy from information
provided by additional sensors outweighs the drawbacks of



potential interferences of uncorrelated parameters.
The contributions of this paper are as follows:
1) we propose a unified method of determining fixed time

offsets between sensors using batch, continuous-time,
maximum-likelihood estimation;

2) we derive an estimator for the calibration of a camera
and inertial measurement unit (IMU) that simultane-
ously determines the transformation and the temporal
offset between the camera and IMU;

3) we evaluate the estimator on simulated and real data
(from the setup depicted in Figure 1) and show that
it is sensitive enough to determine temporal offsets up
to a fraction of the period of the highest-rate sensor,
including differences due to camera exposure time; and

4) we demonstrate that the time delay estimation signif-
icantly benefits from the additional information com-
prised in acceleration measurements—information that
was not exploited in previous approaches ([5], [6]).

II. RELATED WORK

Early efforts in determining the spatial relationship be-
tween an IMU and a camera were made by Alves et al.
[8]. By mounting a visual-inertial sensor onto a pendulum
equipped with a high-resolution encoder, the authors of this
study were able to estimate the relative rotation between
camera and IMU as well as scale factors and axis mis-
alignments in the IMU. In [9], orientation estimation was
facilitated using a set of still images and a gravity aligned
visual calibration pattern. Furthermore, the study extended
previous work to further calibrate for the relative displace-
ment of camera and IMU in a separate procedure which
involved mounting the device on a turntable and aligning
it in a way that the IMU is not affected by accelerations
other than gravity.

More recently, recursive approaches were employed to
jointly estimate relative rotation and translation from mea-
surements acquired by dynamically moving a camera IMU
combination in front of a calibration pattern [10], [11]. Both
studies further address the question of the observability of the
calibration, deriving that it can be determined when sufficient
rotational velocity is present in the dataset. Other approaches
estimate the transformation in a batch optimization over a set
of inertial measurements and calibration pattern observations
[12], [13]. Among those, our algorithm is most similar to [13]
in that it also employs B-splines to parameterize the motion
of the device.

All these studies have in common that they assume that
IMU and camera have been temporally calibrated in a sepa-
rate, preceding step and that any offset in the timing of their
measurements has been compensated for. In [5], a variation
of the iterative closest point algorithm (ICP) was used to
determine a fixed time offset by aligning orientation curves
sensed by the camera and gyroscopes individually. However,
the algorithm makes simplifying assumptions about the bias
in inertial measurements and it remains unclear how this ap-
proach extends to other sensors than the ones presented on—
especially as it does not make any use of the acceleration

measurements provided by the IMU. In [6], an estimate of
the time offset is established either by temporally aligning the
frame independent absolute rotational velocity or by deter-
mining the phase shift of common frequencies in frequency
domain, thus avoiding the joint estimation of the time offset
and the relative orientation of the sensors with respect to
each other. Obviously, relative orientation and time offset are
uncorrelated quantities, and by separating their estimation,
the approach neatly avoids cases in which inaccuracies in
one parameter affect the estimate of the other. However,
the work demonstrates the separation only for gyroscope
measurements, and it is not immediately clear how to achieve
separation for other types of sensors. Like [5], this approach
disregards the information comprised in the accelerometer
readings. In contrast, our work suggests that the temporal
calibration benefits more from additional measurements than
from the rigorous separation of uncorrelated parameters in
the estimation.

III. THEORY

In this section we consider the problem of determining
the relative time offset between a pair of sensors. It is
straightforward to extend the results to multiple sensors.

A. Estimating Time Offsets using Basis Functions

Throughout this section, we follow the basis function ap-
proach for batch continuous-time state estimation presented
in Furgale et al. [7]. Time-varying states are represented as
the weighted sum of a finite number of known analytical
basis functions. For example, a D-dimensional state, x(t),
may be written as

Φ(t) :=
[
φ1(t) . . . φB(t)

]
, x(t) := Φ(t)c, (1)

where each φb(t) is a known D × 1 analytical function of
time and Φ(t) is a D×B stacked basis matrix. To estimate
x(t), we simply estimate c, the B×1 column of coefficients.

When estimating time offsets from measurement data, we
will encounter error terms such as

ej := yj − h
(
x(tj + d)

)
, (2)

where yj is a measurement that arrived with timestamp
tj , h(·) is a measurement model that produces a predicted
measurement from x(·), and d is the unknown time offset.
Using basis functions, this becomes

ej = yj − h
(
Φ(tj + d)c

)
, (3)

which is easy to evaluate for different values of d as it
changes during optimization. The analytical Jacobian of the
error term, needed for nonlinear least squares estimation, is
derived by linearizing (3) about a nominal value, d̄, with
respect to small changes, ∆d. This results in the expression

ej ≈ yj − h
(
Φ(tj + d̄)c

)
−HΦ̇(tj + d̄)c∆d, (4)

where the over dot represents a time derivative and

H :=
∂h
∂x

∣∣∣∣
x(Φ(tj+d̄)c)

. (5)



In (4), Φ(t) is a known function and we assume its time
derivative, Φ̇(t), is available analytically.

This approach has two clear benefits. Firstly, it allows
us to treat the problem of estimating time offsets within
the rigorous theoretical framework of maximum likelihood
estimation. Secondly, it allows us to leave the problem in
continuous time so that the delayed measurement equations
and their Jacobians can be evaluated analytically.

In short, estimating the time offsets in a principled way
becomes easy.

B. An Example: Camera/IMU Calibration
Rather than delving further into the general case, we will

proceed with the specific example of calibrating a camera
and IMU. The goal of calibration is to determine the relative
rotation, translation, and time offset between the sensors.

To perform calibration, we collect a set of data over a
short time interval, T = [t1, tK ] (typically 1–2 minutes),
as the sensor head is waved in front of a static calibration
pattern. Figure 1 shows the basic problem setup. Estimation
is performed with respect to an inertial world coordinate
frame, F−→w. The linear acceleration and angular velocity are
measured in the IMU frame, F−→i(t). The camera coordinate
frame, F−→c(t), is placed at the camera’s optical center with
the z-axis pointing down the optical axis.

1) Quantities Estimated: Our algorithm estimates time-
invariant parameters for (i) the gravity direction, gw, ex-
pressed in F−→w, (ii) the transformation between the camera
and the IMU, Tc,i, and (iii) the offset between camera time
and IMU time, d. It also estimates time-varying states: (iv)
the pose of the IMU, Tw,i(t), and (v) the accelerometer
(ba(t)) and gyroscope (bω(t)) biases.

2) Parameterization of Time-Varying States: Time-
varying states are represented by B-spline functions. B-
splines produce simple analytical functions of time with
good representational power. Please see [14] for a thorough
introduction.

The IMU pose is parameterized as a 6 × 1 spline, using
three degrees of freedom for orientation and three for trans-
lation. The transformation that takes points from the IMU
frame to the world frame at any time t can be built as

Tw,i(t) :=

[
C
(
ϕ(t)

)
t(t)

0T 1

]
, (6)

where ϕ(t) := Φϕ(t)cϕ encodes the orientation parameters,
C(·) is a function that builds a rotation matrix from our
parameters, and t(t) := Φt(t)ct encodes the translation. The
velocity, v(t), and acceleration, a(t), of the platform with
respect to and expressed in the world frame are

v(t) = ṫ(t) = Φ̇t(t)ct , a(t) = ẗ(t) = Φ̈t(t)ct . (7)

For a given rotation parameterization, the relationship to
angular velocity is of the form

ω(t) = S
(
ϕ(t)

)
ϕ̇(t) = S

(
Φ(t)cϕ

)
Φ̇(t)cϕ , (8)

where S(·) is the standard matrix relating parameter rates to
angular velocity [15]. In this paper we used the axis/angle
parameterization of rotation where ϕ(t) represents rotation
by the angle ϕ(t) =

√
ϕ(t)Tϕ(t) about the axis ϕ(t)/ϕ(t).

3) Measurement and Process Models: Each accelerome-
ter measurement, αk, and gyroscope measurement, $k, is
sampled at time tk, where k = 1 . . .K. The pixel location
of landmark, pmw , seen at time tj + d is denoted ymj , where
tj is the image timestamp, d is the unknown time offset,
and j = 1 . . . J indexes the images. We use the standard,
discrete-time IMU and camera measurement equations,

αk := C (ϕ(tk))
T (a(tk)− gw

)
+ ba(tk) + nak , (9a)

$k := C (ϕ(tk))
T
ω(tk) + bω(tk) + nωk

, (9b)

ymj := h
(
Tc,iTw,i(tj + d)−1pmw

)
+ nymj

, (9c)

where each n ∼ N (0,R) is assumed to be statistically
independent of the others, h(·) may be any nonlinear camera
model, and there are M landmarks, {pmw |m = 1 . . .M}. We
have written these error terms as if the image measurements
are delayed with respect to the IMU measurements. This
assumption is only for convenience as it is easier to write
out and implement delayed image error terms. Nothing is
lost as d can be negative.

We model the IMU biases as driven by zero-mean white
Gaussian processes:

ḃa(t) = wa(t) wa(t) ∼ GP (0,Qaδ(t− t′)) (10a)

ḃω(t) = wω(t) wω(t) ∼ GP (0,Qωδ(t− t′)) (10b)

We assume the processes are statistically independent so
that E

[
wa(t)wω(t′)T

]
= 0 for all t, t′, where E[·] is the

expectation operator.
4) The Estimator: We estimate the five quantities de-

fined in Section III-B.1. Error terms associated with the
measurements are constructed as the difference between
the measurement and the predicted measurement given the
current state estimate. The continuous-time process models
for the IMU biases give rise to integral error terms (refer to
[7] for more details). Altogether, our objective function is
built from the following components:

eymj := ymj − h
(
Tc,iTw,i(tj + d)−1pmw

)
(11a)

Jy :=
1

2

J∑
j=1

M∑
m=1

eTymj
R−1
ymj

eymj
(11b)

eαk
:= αk − C (ϕ(tk))

T (a(tk)− gw
)

+ ba(tk) (11c)

Jα :=
1

2

K∑
k=1

eTαk
R−1
αk

eαk
(11d)

eωk
:= $k − C (ϕ(tk))

T
ω(tk) + bω(tk) (11e)

Jω :=
1

2

K∑
k=1

eTωk
R−1
ωk

eωk
(11f)

eba(t) := ḃa(t) (11g)

Jba :=
1

2

∫ tK

t1

eba(τ)TQ−1
a eba(τ) dτ (11h)

ebω (t) := ḃω(t) (11i)

Jbω :=
1

2

∫ tK

t1

ebω (τ)TQ−1
ω ebω (τ) dτ (11j)



The Levenberg-Marquardt (LM) algorithm [16] is used to
minimize J := Jy+Jα+Jω+Jba +Jbw to find the maximum
likelihood estimate of all unknown parameters at once.

IV. IMPLEMENTATION

This section describes the implementation details of the
estimator. We make the following assumptions:

- the camera intrinsic calibration is known;
- the IMU noise and bias models are known;
- we have a guess for the gravity in F−→w;
- we have a guess for the calibration matrix, Tc,i;
- the geometry of the calibration pattern is known so that

we can express the position of each point landmark, pmw ,
in the world coordinate frame, F−→w; and

- we know the data association between an image point,
ymj , and the corresponding point on the calibration
pattern, pmw .

We set the initial guess for the time offset to zero. For
the position of the IMU, Tw,i(t), we produce an initial
guess by first computing a rough estimate of the camera
position, Tw,c(tj), for each image using the perspective n-
point algorithm from the Bouget camera calibration toolbox1.
This is transformed into an initial guess for the position of the
IMU at this time, Tw,i(tj) = Tw,c(tj)Tc,i. Finally, the pose
spline is initialized using the linear solution of Schoenberg
and Reinsch (Chapter XIV of [17]).

The IMU pose is encoded as a sixth-order B-spline (a
piecewise fifth-degree polynomial). This high-order repre-
sentation encodes acceleration as a cubic polynomial. We
found this was necessary to accurately capture the dynamic
motion of the sensor head during calibration. The biases are
represented by cubic B-splines. Note that not only the order
of the splines, but also the number of knots has to reflect the
systems dynamics, requiring a greater number of knots for
faster varying quantities. The algorithm allows for regular-
ization terms, which are modeled as random walk processes
(see [7]) that constrain the temporal evolution of estimates
over periods with insufficiently constraining measurements.
These terms correspond to physical constraints imposed onto
the motion of the sensor system by its finite inertia and the
limiting dynamics of the system actuating the sensors.

Due to the order of the B-spline used to represent the state
and depending on the number of knots used, the system of
equations that must be solved at each iteration of LM can
be very large. However, the matrix is sparsely populated,
primarily due to the compact support of B-spline basis
functions. A sixth-order B-spline basis function is nonzero
over exactly six intervals. The result is that the primary
diagonal of the LM information matrix is block six diagonal
(scalar 6 × 6 = 24) in the section associated with the pose
spline, Tw,i(t). An example matrix for 0.1 seconds of data
is shown in Figure 2. The CHOLMOD sparse matrix library
is used to solve the resulting system at each iteration [18].

1Available at http://www.vision.caltech.edu/bouguetj/
calib_doc/
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Fig. 2. A visualization of the sparsity pattern of the symmetric information
matrix built during each iteration of Levenberg-Marquardt. To enhance the
visibility of the matrix structure, only 0.1 seconds of data was used to
generate this plot. The time-varying pose spline parameters produce a block
diagonal (i) corresponding to Tw,i(t). The width of this diagonal depends
on the spline order as well as the temporal padding. The diagonal blocks
associated with the bias splines (ii) contain information from the bias motion
model, (10). The parameters of the gyro bias spline, bω(t), show striped
correlation with the pose spline (iii) because they are only coupled with
the IMU orientation through (11e). The parameters of the accelerometer
bias, ba(t) are correlated with orientation (iv), position (iv), and gravity (v)
through (11c). Finally, gw , Tc,i and the time offset, d, are all correlated
with the Tw,i(t) (vi) through (11a).

The optimization problem seems well-posed. Figure 3
shows the cost function evaluated in the neighborhood of the
minimum on 40 real datasets from Section V-B. The figure
clearly shows that the cost function in the neighborhood of
the minimum is convex and steep with respect to changes in
d.
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Fig. 3. The cost function evaluated for different values of the time offset, d,
in the neighborhood of the minimum, d̄, on 40 real datasets from Section V-
B. In this neighborhood, the cost function is convex.

During optimization, error terms associated with the de-
layed image measurements may move across knot boundaries
of the spline. This can cause the sparsity pattern of the
linear system to change each iteration. It is significantly less
computationally expensive to solve each iteration when the
sparsity pattern does not change as we can cache a symbolic
matrix factorization and preallocate our sparse matrix data
structures. Consequently, the Jacobians of each image error
term, (11a), are extended by additional columns to account
for possible dependence on the parameters of neighboring b-
spline coefficients. To this end, the code accepts a temporal
padding value in seconds that limits the extent of this
neighborhood and hence constrains the time delay to lie
within the boundaries of its magnitude. Note that choosing
this value to be too large results in increased processing time
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as the number of potentially non-zero entries increases, while
choosing it too small results in a failure of the optimization
routine. For the experiments in this paper, we used a time
padding of 0.04 seconds.

V. EXPERIMENTS

In this section, we will briefly demonstrate the accuracy
and stability of our calibration framework by presenting
results from 500 simulated and 40 real calibration datasets.
For both simulated and real data, we fixed the inertial
measurement rate to 200 Hz and the camera frame rate to
20 Hz. We determined the internal noise parameters of our
IMU using Allan Variance analysis [19], [20]. The camera
was calibrated intrinsically using the equidistant model and
it was assumed that the landmark measurements seen in
the images were subject to isotropic, zero-mean Gaussian
distributed noise with a standard deviation of 0.5 pixels. The
simulations were generated with the same sensor models as
the real data.

In order to represent the pose and bias curves, 50 basis
functions per second were used. This number was found to
be necessary to enable the pose spline to accurately capture
the dynamics of the platform. It remains future work to
automatically select the minimal number of basis functions
for a given motion.

The resulting sparse linear system of equations that must
be solved at each iteration of LM is very large. A dataset
of approximately 80 seconds corresponds to a system of
over 12,400 vector-valued design variables and 144,000 error
terms. The sparse matrix associated with the linear system
is about 50,000 × 50,000 with 3,550,000 non-zero entries.
Each of these iterations requires approximately 18 seconds
to build the linear system and 0.2 seconds to solve it using
CHOLMOD on a MacBook Pro with a 2.4 GHz Intel Core i7
and 8GB of RAM. Hence, the limiting factor is the number of
error terms (which determines the amount of time it takes to
build the linear system) and not the number of basis functions
used (which determines how long it takes to solve the linear
system). For the processed datasets, the algorithm converged
to a solution in 3 to 15 iterations, which translates into a
maximum time of 5 minutes for a single dataset.

A. Simulation

For the simulation, we used sums of sinusoidal functions
of time for position and orientation in order to create a
sensor trajectory of about 90 seconds. The average absolute
angular velocity of 37◦ s−1 and average absolute acceleration
of about 0.59 m/s2 in the simulation roughly resembled
values found for real calibration sequences. For each of five
time offsets, spaced equally between −8ms and 8ms, we
generated 100 realizations of this experiment by corrupting
perfect inertial sensor measurements with random noise and
an additive bias modelled as a random walk process. We
simulated a camera rotated by 180◦ about the optical axis
and displaced by t =

[
103 −15 −10

]T
mm with respect

to the IMU. The initial guess for the relative orientation was
accurate up to a few of degrees, while an initial displacement

of tinit =
[
0 0 0

]T
mm was provided. Figure 4 depicts

a histogram of errors in time offset estimation overlaid
with the marginal uncertainty returned by the estimator and
plotted as a Gaussian probability density function (PDF).
The plot shows that, given the correct noise models, the
approach is capable of accurately estimating the time offset
and returning a reasonable uncertainty of the estimate. The
displacement of camera and IMU was estimated as test =[
103.73 −15.18 −9.98

]T
mm with standard deviations

of σt =
[
0.38 0.98 0.17

]T
. Yaw, pitch and roll were

estimated as ϕest =
[
179.9999◦ −0.0098◦ 0.0003◦

]T
with σϕ =

[
0.0032◦ 0.0086◦ 0.0072◦

]T
.
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Fig. 4. A histogram of the error in the estimated time offset over 500
simulation trials with the time offset varying between −8ms and 8ms. The
marginal uncertainty returned by the estimator is plotted as a Gaussian
probability density function (solid red). The results clearly show that, if
the correct noise models are known, this method is able to estimate the
time offset between the two devices and return a reasonable uncertainty of
the estimate.

B. Real Data

For this experiment, we used a custom-made sensor,
consisting of multiple Aptina MT9V034 global shutter im-
age sensors and a tactical grade IMU (Analog Devices
ADIS16488). We routed all sensor data streams through
an FPGA, recording the timestamps at the moment the
image sensors were triggered and an IMU data request
was initialized. Note that while using an FPGA for data
acquisition helps with avoiding stochastic delays introduced
by rescheduling tasks on a processor, it does not tackle the
issue of logic and filter delays inside the sensors, and in our
setup does not account for communication delays introduced
when polling measurements.

For each of four fixed exposure times, we collected ten
datasets by moving the sensor in front of the calibration pat-
tern for about 90 seconds per dataset. To render all quantities
of the calibration observable, we ensured sufficient rotational
velocity was present in the motion [10], maintaining an
average absolute angular velocity of about 55◦ s−1 and an
average absolute acceleration of 1.1m/s2 over all datasets.

Figure 5 depicts the key results for the temporal calibration
as a comparison between estimated time offsets and fixed
exposure times. The middle of the exposure time constitutes
the ideal point to timestamp an image [1] and Figure 6
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(b) Difference of offset estimation to the line of best fit.

Fig. 5. The key results from our experiments. Figure 5(a) depicts the time offset estimated for four different, fixed exposure times and ten datasets per
exposure setting. The estimation made use of all inertial sensors available in the IMU. The slope of the line of best fit (drawn as a solid gray line) is
estimated as 0.498, which compares well with its theoretical value of 0.5 (marked by the dashed gray line). Figure 5(b) shows a histogram of the difference
between the estimates and the line of best fit for all 40 experiments. For all datasets, the difference stays within a domain of ±0.2 ms, which constitutes
just 4% of the shortest measurement period in the experiment.

Fig. 6. Images of the checkerboard may be blurred due to the motion of
the camera. This figure shows details from two images taken from one of
the datasets. The corner finding algorithm used in this paper performs well
for images taken with a static camera (left) as well as under motion blur
(right), returning the location of the corner near the middle of the exposure
time for the vast majority of motions.

illustrates this; each corner point extracted from an image
in the presence of motion blur resembles the position of the
projection of the corresponding world point in the middle of
the exposure time. In this experiment, we expected the time
offset to account for fixed communication and filter delays
plus half the exposure time as the images are timestamped
at the start of the exposure time. Hence, we expect that a
plot of temporal offset versus exposure time should show a
linear relationship with slope 0.5. Note that by extrapolating
the line for an exposure time of zero, one may estimate the
communication and filter delay for the IMU. However, this
only holds true under the assumption that the trigger pulse
immediately initiates exposure. In case the internal logic
of the image sensor adds additional delays to the trigger
pulse, only the difference in delays can be observed. As the
true delays are unavailable for our experiments, we use the
deviation in slope of the line of best fit from the theoretical
value as well as the RMS error with respect to a line of slope
0.5, fitted in a least squares sense to evaluate the results.

Figure 5(a) shows that our framework is capable of re-
producing the inter-sensor time delay up to high accuracy,
estimating a slope of 0.498. Figure 5(b) shows the differences
of the estimates to the line of best fit, which are all below
0.2 ms. This suggests that the method is accurate to a
fraction of the IMU sampling period of 5 ms. The spatial
calibration between camera and IMU was determined to be
test =

[
74.5374 −8.6751 12.3919

]T
mm with standard

deviations of σt =
[
1.6081 0.9051 0.7609

]T
for dis-

placement and ϕest =
[
180.7531◦ 0.1784◦ −0.1648◦

]T
with σϕ =

[
0.0206◦ 0.0599◦ 0.0417◦

]T
for yaw, pitch

and roll.
Figure 7 visualizes a comparison of our method, using all
available sensors in camera IMU calibration as well as only
subsets with a reference implementation of the separated
calibration based on the frame independent absolute angular
velocity as proposed in [6]. The estimated slopes are 0.498
for the joint calibration using all sensors, 0.531 for the
separate estimation of the time delay, and 0.493 and 0.553 for
the approach using only angular velocities or accelerations in
addition to images. The RMS errors are 0.054ms, 0.344ms,
0.165ms and 0.572ms respectively. The results suggest that
incorporating measurements from all available sensors into a
continuous-time batch optimization yields significantly more
accurate and consistent results compared to calibrations that
only make use of a subset of the measurements at hand.
In our experiments, the gain from the additional information
comprised in the accelerometer readings appears to outweigh
possible drawbacks of jointly estimating parameters that
could be separated otherwise.
Note that the temporal-spatial calibration solely based on
camera and accelerometer readings, though less accurate,
marks an extension in camera IMU calibration to a previ-
ously not considered combination of sensors. In this con-
figuration and with constrained dynamics of the sensor, the
spatial transformation between camera and IMU is fully
observable. Due to the lack of frequent feedback about
the sensor’s orientation or the change of it respectively, a
regularizing term on the orientation was introduced. Using a
single dataset, we empirically identified the parameters of the
random walk model employed in our approach and applied
these settings to the evaluation of all datasets. The fact that
our algorithm converged to reasonable values for time delay
and inter-sensor transformation suggests that the significance
of this approach is not limited to camera IMU calibration but
presumably extends to other sensor setups as well.
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Fig. 7. Comparison of approaches for determining the time delay. The
joint estimation incorporating all sensor information available results in sig-
nificantly reduced variance in the estimates and the most consistent results.
Using a subset of all sensors results—either only the gyroscopes or only the
accelerometer in addition to the camera—yields less accurate estimates. In
our experiments, a separation of temporal and spatial calibration as proposed
in [6] resulted in less accurate estimates, suggesting that the calibration
may benefit more from additional measurements than from the separation
of uncorrelated parameters.

VI. CONCLUSION AND FUTURE WORK

In this study, we presented a novel approach to jointly
calibrate for temporal offsets and spatial transformations
between multiple sensors. Using a continuous state rep-
resentation allows us to treat the problem of estimating
temporal offsets within the rigorous theoretical framework
of maximum likelihood estimation.

For the case of camera IMU calibration, we showed that
it was beneficial to calibrate for time offsets and inter-sensor
transformations in a single estimator, rather than determining
these quantities in separate procedures. We believe that this
holds true for all multi-sensor systems where the estimated
quantities are well observable.

However, further questions need to be addressed in future
work. For sensor setups without a common clock, the time
offset may be different from start up to start up and subject to
drift over longer periods of time, hence requiring continuous
estimation of the offset in operation and in the absence of a
known visual calibration target.

Furthermore, we strongly believe that the application
domain of this framework extends to sensor combinations
other than camera and IMU and future work will include
experiments with a broader spectrum of sensors and setups.
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