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Abstract— Roboticists often formulate estimation problems
in discrete time for the practical reason of keeping the state
size tractable. However, the discrete-time approach does not
scale well for use with high-rate sensors, such as inertial
measurement units or sweeping laser imaging sensors. The
difficulty lies in the fact that a pose variable is typically
included for every time at which a measurement is acquired,
rendering the dimension of the state impractically large for
large numbers of measurements. This issue is exacerbated for
the simultaneous localization and mapping (SLAM) problem,
which further augments the state to include landmark variables.
To address this tractability issue, we propose to move the full
maximum likelihood estimation (MLE) problem into continuous
time and use temporal basis functions to keep the state size
manageable. We present a full probabilistic derivation of the
continuous-time estimation problem, derive an estimator based
on the assumption that the densities and processes involved
are Gaussian, and show how coefficients of a relatively small
number of basis functions can form the state to be estimated,
making the solution efficient. Our derivation is presented in
steps of increasingly specific assumptions, opening the door
to the development of other novel continuous-time estimation
algorithms through the application of different assumptions
at any point. We use the SLAM problem as our motivation
throughout the paper, although the approach is not specific
to this application. Results from a self-calibration experiment
involving a camera and a high-rate inertial measurement unit
are provided to validate the approach.

I. INTRODUCTION

Recent decades have seen the probabilistic approach to
robotics become the dominant paradigm, particularly for
estimation problems [1]. However, in all but a few special-
ized cases, a discrete-time approach is taken. In particular,
simultaneous localization and mapping (SLAM), a canonical
mobile robotics problem [2], has been formulated in discrete
time since its inception; from the early papers exploring
the probabilistic fundamentals [3], [4] to recent survey and
tutorial papers [2], [5], [6], SLAM is introduced in terms
of a discrete sequence of robot poses. Although continuous-
time estimation theory has existed for longer than SLAM
[7], [8], researchers in robotics have generally avoided the
use of continuous-time models; one notable exception is
the amalgamation of a sequence of inertial measurements
between two robot poses using continuous-time integration
[9], [10]. While SLAM is a prevelant estimation problem
in robotics, the tools derived in this paper generalize well
beyond the SLAM problem. Still, we will use SLAM as the
backdrop for the developments in this paper.

Roboticists typically use three common estimation tools
[6]: (i) filtering', (ii) batch nonlinear optimization, and (iii)
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'Here we are grouping extended Kalman filtering, unscented Kalman
filtering, and information filtering.

particle filtering methods. For many robot/sensor combina-
tions, there is no drawback to using a discrete-time formula-
tion for SLAM and any of the three paradigms are suitable.
However, the existing solutions tend to be pushed to their
limits under two problematic situations:
1) When a sensor is capturing data at a very high rate,
such as an inertial measurement unit (IMU) [9], [11],
[10], [12], and

2) When a ranging or imaging sensor is capturing con-
tinuously while a robot is in motion [13], [14].

The first situation—high-rate data capture—is quite nat-
urally handled by filtering algorithms (at least from a
computational-complexity perspective), as they only retain
an estimate of the most recent robot pose in the state vector
(following the Markov assumption). Particle filtering and
batch methods break down in this situation for different rea-
sons. Particle filters are well-suited for low-dimensional state
vectors but become impractical for 6-degree-of-freedom pose
estimation, or state vectors that include velocity, acceleration,
or sensor biases [15]. On the other hand, batch optimization
becomes intractable in the face of high-rate measurements
because the error term associated with each measurement
requires an estimate of the state at the measurement time;
as the number of measurement times gets large, so does the
number of state variables that the algorithm must estimate.

There are very few studies dealing with the second
problematic situation. Bosse and Zlot [13] consider a
continuously-spinning planar laser rangefinder and Ringaby
and Forssen [14] consider a rolling-shutter camera. In both
situations, the solutions are necessarily based on batch meth-
ods as a window of recent robot poses must be iteratively
adjusted to correct the alignment of features extracted from
the laser data [13] or images [14]. Furthermore, both papers
use interpolation between poses to keep the size of the state
vector tractable. The adjustment of several poses and the use
of interpolation both preclude the use of filtering algorithms
to solve these problems.

Consequently, no single approach is able to handle both
of the cases listed above.

In recent years, there have been a number of capable
SLAM algorithms developed that are based on batch es-
timation but are suitable for online use [16], [17], [18]
in large, unstructured, three-dimensional environments. The
flexibility of these algorithms to represent large maps, to
delay loop-closing decisions, and to process loop closures
in constant time, may be attributed to the underlying graph
representation. Furthermore, Strasdat et al. [19] show that,
when compared to filtering techniques, batch estimation
provides greater accuracy per unit of computational effort,
and avoids the accumulation of linearization errors by peri-
odically relinearizing about the current estimate.



To reconcile the interest in sensor fusion between visual
and inertial sensors and to provide a theoretical framework on
which to base new algorithms for mapping with continuous-
capture imaging sensors, we seek an algorithm that exhibits
the desirable characteristics of batch estimation, but is able
to handle both problematic situations described above. We
propose to do this by lifting the estimation framework into
continuous time.

The contributions of this paper are as follows:

1) We introduce a novel continuous-time-state, discrete-
time-measurement batch estimation methodology.

2) We provide a derivation of the full SLAM problem in
continuous time (CT-SLAM). To the best of our knowl-
edge, this is the first presentation of this derviation.

3) We detail a realization of CT-SLAM using a weighted
sum of known basis functions to represent the robot
state.

4) We implement a CT-SLAM solution based on B-spline
basis functions.

5) We evaluate the solution on a problem that has recently
received a lot of attention: the calibration of a camera
and an IMU [9], [10], [11], [12].

We have intentionally divided our derivation into steps repre-
senting increasingly specific assumptions—starting with the
manipulation of the full posterior in Section III-A, assum-
ing Gaussian densities/processes for the prior, measurement
model, and continuous-time motion model in Section III-B,
deriving the objective function for a maximum a posteriori
estimator in Section III-C, describing a realization of this
estimator in Section III-D by using a weighted sum of basis
functions to represent the robot state, and finally outlining
our use of the B-spline basis functions in Section III-E, which
are then used within the experiments in Section IV.

Our hope is that, by dividing the derivation into steps,
we encourage other researchers to devise novel solutions
to the continuous-time, batch-estimation problem by making
different assumptions at any point.

II. RELATED WORK

Recent research has brought the approach of non-
parametric estimation using Gaussian processes (GPs) [20]
into robotics and computer vision. Although GPs are well-
suited to estimating continuous functions, they are most
easily adapted for estimating distributions over outputs, such
as sensor and process models [21]. Work addressing the
more difficult problem of discovering a set of meaningful
latent variables representing the robot poses is compelling
[22] but preliminary and these techniques are only recently
being applied to standard problems in robotics [23].

Most prior use of continuous functions to represent robot
states is centered around the related idea of interpolation.
Work in [24] presented a two-stage method of estimating
a camera’s trajectory with the help of an IMU by first
estimating the orientation of the camera and then fitting a
spline to the image and accelerometer data to recover the
translation. This method was evaluated by [25] and found to
be unsuitable for online applications. The difficult problem

of estimating the trajectory of a spinning scanning laser
rangefinder under continuous motion without using other
sensors was addressed in [13]. The algorithm presented
estimates a linearly interpolated trajectory by iteratively
refining both the trajectory and the data associations. They
impose a set of heuristic constraints to ensure the trajectory
remains smooth—a heuristic version of the continuous-time
motion model presented in Section III-B. A similar problem
was addressed in [14], where they used interpolation between
camera poses to correct the distortion of a sequence of
images captured by a rolling shutter camera. They found that
the accuracy of the distortion correction increased with the
addition of extra poses. This agrees with the experimental
results we present in Section IV-C.2.

The work that is most closely related to ours is that of
Bibby et al. [26]. They derived a complete SLAM system
capable of estimating the robot pose, building a map, and
tracking dynamic obstacles in the scene. They used cubic
splines to represent the trajectory of the robot and all
dynamic obstacles. Unfortunately, they leave the derivation
of SLAM in discrete time. However, this is an important
paper as they highlight some of the key benefits to using basis
functions as a state representation: (i) a smooth trajectory
may be represented with fewer state variables than a discrete-
time formulation, and (ii) fusing information from sensors
running at different rates becomes easy when the state
representation is continuous.

Given this prior work, we believe that a clear derivation
of the probabilistic form of continuous-time state estimation
in robotics is a logical next step to push research forward in
this area.

III. CoNTINUOUS-TIME SLAM

In this section we derive the probabilistic formulation
for the full SLAM problem with a continuous-time robot
state and discrete-time measurements. We closely follow the
familiar discrete-time derivation (c.f. [27]) but use identities
from Jazwinski [8], Chapter 5 when there are differences
between the discrete- and continuous-time cases.

A. The Full SLAM Posterior

Consider a mobile robot navigating through an unknown
environment during the time interval 7' = [to,tx]. Within
this interval, we define the following quantities:

. The robot state at time ¢, defined over T'
The control input to the robot at time ¢,
defined over T'
m : A column of parameters representing the
time-invariant map
z; . A measurement at time ¢;, 1 <i < N

Z1:N The set of all measurements, {z,...,zn}

The probabilistic form of continuous-time SLAM seeks an
estimate of the joint posterior density, p (x(¢), m|u(t),z1.n),
of the robot state, x(¢), over the interval, T, and the map,



m, given the control inputs, u(t), and measurements, z;.y°.

We assume that the probability density of the robot’s initial
state, p(x(to)), is known. Following the standard derivation,
Bayes’ rule is used to rewrite the posterior as

p (s [x(1). m.u(®)) p (x(8). mlu(t) "
p (z1:n[u(?))

Assuming that the measurements have no dependence on the

control inputs, this becomes

P (m[x(t),m) p (x(1). mpu(®) ®
p(21:n)

Next, we make the assumption that the measurements are

independent of each other (given the robot trajectory and the

map), to get

p(x(t),mlu(t)) TV, p(zi]x(t;), m)
p(z1:N) '

3)

Finally, we assume that the map, m, is independent of the
robot’s trajectory, x(¢t), and control inputs, u(¢), resulting in

P (m) p (x()|u(®) [T,  (2:]x(t:), m) .

p(z1:n) @

This expression represents the full SLAM posterior density
that we would like to estimate.

B. The Gaussian Assumption

Following common practice [27], we make the assumption
that the quantities of interest in (4) are Gaussian. The
probabilistic measurement model is thus

z; :h(x (ti),m) +n;, n; N/\/’(OvRi)a ®)

where h(-) is a deterministic measurement function and
n; represents measurement noise drawn from a zero-mean
Gaussian density with covariance R;. This implies that

p (zi|x(t:),m) = N (h(x(t;),m),R;) . (6)

Similarly, we assume that the prior beliefs for the map and
initial state are Gaussian-distributed:

m~ N (i, P,), x(to) ~ N (%0,P:) @)

In continuous time, the motion model, p(x(¢)[u(t)), may be
specified as a continuous stochastic dynamical system [8, p.
143] described formally by the differential equation

x(t) = £(x(t), u(t)) + w(t), (®)

where the over-dot represents the time derivative, f(-) is
a deterministic function, and w(t) is a zero-mean, white
Gaussian process, written GP (0,Q4(¢t — t')). The covariance
function for this process is Q3(t —t'), where §(-) is Dirac’s
delta function. Hence, defining

eu(t) = x(t) — f(x(t), u(?)), ©))

%In the most general sense, x(t) represents time-varying states and m
represents time-invariant states. Assigning these the labels “robot” and
“map” is merely a common convention in robotics.

we may write [8, p. 156]:

p(X(t)‘ll(t)) o p(X(to)) exp{_;/ K GU(T)TQ_leu(T) dT}

to
(10)
At this point, we have specified a form for all of the
probability densities in (4) except p(z;). This is usually left
unspecified because it has no dependence on the unknown
state variables.

C. Maximum A Posteriori Estimation

Using (4) together with the Gaussian densities and pro-
cesses specified in Section III-B, we may derive the objective
function for a maximum a posteriori estimator of the robot
state and the map. We want to find x(¢)* and m*, the esti-
mates that minimize the negative logarithm of the posterior
likelihood,

{x(¢)*,m*} = argmin (— log (p(x(¢), m|u(t),z1.n)). (11)

x(t),m
Using (4), (6), (7), and (10), we can expand the negative log

posterior into a quadratic form,

—log (p(x(t),mu(t),z1.n) = c+ Jo + Jo + I + Ju, (12)

where ¢ is some constant that does not depend on x(¢) or m,
and

N
e, =1 —h(x(ti),m)7 J. :% Z;Ri_lezL (13a)
i=1
eni=m—m, J,:= %eﬁP;lem (13b)
er = x(to) — %o, Ja —%engleI (13¢)
1 [t T -1
Ju = 3 e.(7) Q Teu(T)dr (13d)
to

Dropping ¢, we define J (x(¢),m) := J. + Jz + Jm + Ju, and
note that

{x(t)*,m"} = argmin (J (x(¢), m)) (14)

x(t),m

has the same solution as (11).

D. Basis Function Formulation

At this point, it may be unclear what we have gained;
although we have proposed an objective function, we have
not demonstrated how it is possible to estimate x(¢), an
uncountably infinite number of states. One possibility is to
approximate x(¢) as the weighted sum of a finite set of known
temporal basis functions,

B(t) = [ (1) Su(t)], x(t):= @(D)e.

When x(t) is D-dimensional, each individual basis function,
P, (t), is also D-dimensional and the stacked basis matrix,
®(t), is D x M. Under the basis function formulation, our
goal is to estimate the M x 1 column of coefficients, c.
Using basis functions to represent the state turns our
goal of solving (14) into a parametric estimation problem.
Furthermore, as ®(¢) is known, we may look up the state

15)



at any time of interest simply by evaluating (15) and time
derivatives of the state are available as x(t) = ®(t)c.

Without specifying the exact basis functions, we may now
derive an estimator, based on the Gauss-Newton algorithm,
to solve (14). Defining 6 := [c¢” mT]T, a joint state vector,
and starting with an initial guess, 6 = [¢” ET]T, we may
linearize each error term ((13a), (13b), (13c), and (9)) with
respect to a perturbation, 66 = [s¢” ém”]", representing
small changes in @ about 6. Linearization of the error terms
makes J exactly quadratic in §6. To find the optimal update
step, 40™, for a single iteration of Gauss-Newton, we look for
the minimum of the quadratic objective function by setting
595{, = 0 and solving the resulting linear system of equations
for 66*.

Terms in the objective function corresponding to the priors
and measurement model are very similar to the discrete-
time case so we will not derive their linearized forms here.
However, the motion model term, (9), is unique to continuous
time and so we expand it fully as

e (t) = x(t) — f(x(t),u(t)) (16a)
— &(t)e — f(B(t)c, u(t)) (16b)
= &(t) (C+ d¢) — #(D(t) (€ + b¢) ,u(t)) (16¢)
~ € (1) + Eu(1)00, (16d)
where

e.(t) == ®(t)c — f(®(t)c, u(t)), (17)

and .
E.(t) = [i’(t) — et B®) 0] . (18)

Substituting (16d) into (13d), we get

T~ % / " (6u(r) + Eu(1)0)7 Q" (6. () + E.(1)56) dr.
! (19)
Taking 222" gives us
/KEU,(T)TQ‘l( u(7) + Eu(7)86) dr (20)

which splits into two parts:

/tK EU(T)TQ_IEU (1) dT 60 + /tK Eu(T)TQ_IEu (1) dr,

to to

=:Ay =:by,

2D
where we have defined A, and b, for compactness of
notation. The difficulty of evaluating these integrals depends
on the specific form of the functions ®(¢), u(t), and f(-).
Following a similar process for J., J,,, and J, results in
the matrices A., A, and A, and the corresponding columns
b., b.,, and b,. Using these definitions, the Gauss-Newton
update step equation for a single iteration becomes

[Az+Am+AI+Au] 56" — — [bz-l-bm—i—bz—i—bu 22)

=:A =:b
Starting from an initial guess, 8, Gauss-Newton proceeds by
repeatedly (i) evaluating and solving (22), and (ii) applying
the update step, 6 < 6 + §0*, until convergence [28].

After Gauss-Newton has converged, we may recover 6*,
the optimal point estimate, and the covariance of the esti-
mate,

* C* ch Ecm _oAa—1
0" = m*:|7 EZ“"L Emm =A ) (23)

where .. and X,,,, are the covariance matrices represent-
ing uncertainty of the estimates of, respectively, the basis
function coefficients, ¢, and the map, m, and X.,, encodes
correlations between these two.
If we write our uncertainty about the coefficients as
c:=c" +dc, dc~N(0,X..), 24)
it is clear that the resulting estimate for x(¢) is a Gaussian
process with mean FE [®(t) (¢* + dc)] = @(¢)c*, and co-
variance function E [(d)(t)éc) (@(t/)éc)T] =®()E..B(t)T,
where E[-] is the expectation operator. In the notation com-
mon for Gaussian processes [20], our estimate for the robot
state may be written as

X(t) ~ GP(®(t)c", B(t) Do ® () 7). (25)

E. B-Spline State Representation

The above derivation could be solved using any set of basis
functions but, for our particular problem of state estimation
in robotics, we would like the basis functions to satisfy some
general properties:

1) Local Support: We would like the contribution of any
single basis function to be local in time. With this property
the modification of a single coefficient will have only local
effects. This will enable the use of these methods in local
batch optimization where only temporally or spatially local
parameters are optimized in a single batch [16], [17].

2) Simple Analytical Derivatives and Integrals: The rela-
tionship between sensory inputs and the robot state is often
based on derivatives or integrals of the state equations. Hav-
ing access to simple analytical integrals and derivatives will
allow us to evaluate error terms in the estimation equations
analytically and avoid expensive numerical schemes.

Under these criteria, B-spline functions (Figure 1) become
an attractive choice; for any time, a B-spline function is a
simple polynomial that uses only a subset of temporally-local
coefficients. Owing to space limitations, we are not able to
present our complete B-spline derivations. For implementa-
tion we used the matrix formulation presented in [29] rather
than the recurrence-relation approach popularized by de Boor
[30], as we found the former more amenable to the linear-
algebraic forms needed for state estimation.

If we assume the robot pose in three-dimensional space is
expressed in a world frame, i—;w, we can define a spline that
encodes the parameters of the time-varying transformation,
T..i(t), that transforms points from a frame attached to the
robot, Li(t), to Eu. The most straightforward way to do
this is to choose a minimal rotation parameterization and
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Fig. 1. A B-spline basis function of order O is a piecewise polynomial
function of degree O — 1 that is only nonzero over O time segments.
The boundaries between time segments are called knots. In between each
pair of knots, the basis function is defined by a polynomial known as the
segment basis polynomial. By construction, two segment basis polynomials
meeting at a knot share the same value for derivatives O through O — 2.
‘When B-spline basis functions of order O are aligned with a non-decreasing
knot sequence, only O basis functions are nonzero for any value of ¢. This
plot shows a B-spline function (black, solid line) defined by the weighted
sum of nine cubic B-spline basis functions defined on the knot sequence
{—3,...,9}. The curve is only defined where four basis functions are
nonzero.

use three dimensions of the spline to encode rotation® and
the other three to encode translation. The spline is used to
construct the transformation matrix,

(26)

where ¢(t) = ®(t)c, is the B-spline function representing
our rotation parameters, C(-) is a function that builds a
rotation matrix from our parameters, t(t) = ®(t)c; is the
B-spline function representing our translation parameters,
and ®(¢) is a matrix of B-spline basis functions. Under this
representation, the velocity, v(t), and acceleration, a(t), of the
platform with respect to and expressed in the world frame
are

V(1) = () = B(t)er 27)

For a given rotation parameterization, the relationship to
angular velocity is of the form

w(t) = S(p(1) () = S(B(t)e,) B(t)e, |

where S(-) is the standard matrix relating parameter rates to
angular velocity*. For all experiments in this paper, we used
the Cayley—Gibbs—Rodrigues parameterization [32] in which
the column of parameters, ¢ = atan%cp, defines rotation
about the axis a by an angle ¢. This parameterization has
simple algebraic forms for C(y) and S(p) [31],

(28)

Clyp) == m (‘PX<PX - LPX) ) (29a)
S(0) 1= 1 or (1- 7). (29b)

3The drawback to this method is the same faced any time one must
choose a rotation parameterization—rotation parameterizations are subject
to singularities. However, for a particular problem, it is often possible to
choose a parameterization with singularities in improbable or impossible
positions with respect to the problem domain. Hence, we will proceed with
a general exposition that covers all three-parameter rotation representations.

“The form of S(¢) for many common rotation parameterizations may be
found in Table 2.3 on page 31 of [31].
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Fig. 2. The problem setup and experimental apparatus. In the IMU/camera
calibration problem, the goal is to estimate the transformation between
an IMU, F;, and a camera F . rigidly attached to the same sensor
head. To do this, the sensor head is moved through the scene collecting
IMU measurements while the camera observes a set of point landmarks,
{pj|j =1... N}. As part of the estimation process, the time-varying
pose of the IMU is estimated with respect to a fixed world frame, £w.
In experiment 2 we used the wide-baseline (24cm) stereo cameras from a
Point Grey Research Bumblebee XB3 and a MicroStrain 3DM-GX2 IMU.
For evaluation, the sensor head was tracked using a Vicon motion capture
system. The motion capture system recorded the trajectory of the sensor
head and the positions of the landmarks.

where 1 is the identity matrix and (-)* is the skew-symmetric
operator that may be used to implement the cross product,

X

x -z oy
y =z 0 —= 30)
z -y T 0

The expressiveness of this representation depends on the
number and placement of knots, and the order of the B-spline
function. In this paper, we restrict our analysis to cubic (order
4) B-spline functions with uniform knot sequences.

IV. BATCH CONTINUOUS-TIME SLAM FOR
IMU/CAMERA CALIBRATION

In this section we apply our proposed continuous-time
estimation framework to the well-studied problem of de-
termining the rotation and translation between an IMU and
camera that are rigidly mounted to a sensor head. There have
been a host of recent papers addressing this problem and,
because of the high-rate measurements produced by the IMU,
the most common solution methods are based on recursive
Gaussian filtering [9], [11], [12], [10]. Our estimator operates
on the same type of data required by these algorithms: a
dataset collected over a short time interval (up to 3 min-
utes) consisting of linear acceleration measurements, angular
velocity measurements, and point landmark measurements
derived from camera images.

A. Problem Setup

As depicted in Figure 2, this problem requires definition
of several coordinate frames: a world coordinate frame,
F w, that serves as the inertial frame for our estimation
problem; the IMU coordinate frame, f}i(t), in which linear
accelerations and angular velocities are measured; and the
camera coordinate frame, £C(t), situated at the camera’s
optical center with the z-axis pointing down the optical
axis. Our algorithm estimates time-invariant parameters for



(1) gravity, g.,, expressed in £w, (ii) the locations of N
landmarks, {p},|j =1... N} all expressed in Zw, and (iii)
the transformation between the camera and the IMU, T; .. It
also estimates B-spline function coefficients for (iv) the pose
of the IMU, T, ;(t), and (v) the time-varying accelerometer
(bo(t)) and gyroscope (b, (t)) biases. Following [10], we
provide prior information constraining the positions of three
landmarks to make the system observable.

Each accelerometer measurement, o, gyroscope measure-
ment, oy, or landmark measurement, y; . is taken to be
measured at an instant of time, ¢;, and corrupted by zero-
mean Gaussian noise,

ar = C(p(t)" (alts) — gw) +balte) + nar,  (3la)
wy = C (<p(tk))T w(tr) + by (tr) + Ny, (31b)
Yik =8 (Tc,iTw,i(tk)ilpzjﬂ) + nyg, (3lc)

where each n;;, ~ AN (0,R;;) is assumed to be statistically
independent of the others, g(-) is a nonlinear perspective cam-
era model, and there is no requirement that the measurements
are captured synchronously or even periodically.

As the sensor head in this problem is manipulated by
hand, we have no control signal to feed into a motion model,
hence we model the time-varying components of the system
as driven by zero-mean, white Gaussian processes,

t(t) = wi(t), @(t) =wu(t), ba(t) =Wa(t), bu(t) =wu(t),

(32)
where each w;(t) ~ GP(0,Q:6(¢t—¢")). We assume the
processes are statistically independent of each other’ and of
the measurements in (31).

B. Estimator

We estimate the five quantities defined above using the
batch Gauss-Newton algorithm outlined in Section III-D.
Error terms associated with the measurements, (31), are con-
structed as the difference between the measurement and the
predicted measurement given the current state estimate (as
in (13a)). Following Section III-D, we provide an example
of the error term associated with one of the motion models
defined in (32), t(t) = w.(t), wi(t) ~ GP (0,Q:6(t —t')). In
this simple case, the mean function is zero, and so the error
term from (16) collapses to

e, (t) = t(t) = ®(t)c; =~ B(t)c, + B(t) . (33)

—— =~

=:€,,(t) =:E, (t)

The integrals in (21) then become
t
Av= [ &0TQ b(r) dr, (34a)
t(iK ) )

b, = &(r)"Q; ' &(r)dre,. (34b)

to
In the case of B-spline basis functions, the integral involved
in computing A, may be evaluated in closed form and exactly
once for each estimation problem.

SThis means that £ [w;(t)w; (¢)T] = 0 for all ¢, ¢/, where E[] is the
expectation operator.

z[m]

1 05 0 -05 -1 ~ B
y[m] v [m] : x[m]

x [m]

Fig. 3. The trajectories taken by the sensor head (red, solid) and the
landmarks (blue dots) used in our simulation experiment (left) and our
evaluation on real data (right).

Starting from a dataset, our estimator proceeds as follows.
As with any Gauss-Newton estimation algorithm, we require
initial guesses for all quantities we are estimating. We
initialize the IMU bias splines to zero and assume guesses
are available a priori for gravity, the landmark positions,
and the calibration transformation. For the position of the
IMU, T.,.(t), we produce an initial guess by first computing
a rough estimate of the camera position for each image
that has enough landmark measurements—using either the
eight-point method [33] from the OpenCV library in the
monocular case, or Horn’s three-point method [34] in the
stereo case—to compute T, .(tx) for each image time, t.
Applying the initial guess for the calibration transformation
we build T, ;(tx) = Tw,(tx)Te:. Finally, we produce an
initial set of spline coefficients by using the linear algorithm
of Schoenberg and Reinsch (Chapter XIV of [30]). After
generating the initial guesses, the Gauss-Newton algorithm
is run to convergence, processing all measurements and
motion models and iteratively refining the estimate. After
convergence, the mean estimate and covariance are recovered
using (23).

C. Experimental Evaluation

The algorithm described above was evaluated in two
experiments, (1) a simulation designed to test the ability of
the estimator to find the calibration transformation and (2)
an experiment using real data to highlight the ability of this
state representation to represent large problems with fewer
state variables.

1) Simulation: Because of the difficulty of obtaining
accurate ground-truth data for the calibration transformation,
T.:, we tested the algorithm in a simulation where the
noise models and ground-truth values were known exactly.
Anecdotally, we found that large accelerations and angular
velocities made the estimate of T.; more accurate. This
agrees with the observability analysis and the simulation
experiments described in [10].

We generated a 60 second trajectory, shown in Figure 3,
based on sinusoidal functions, which provide analytical
derivatives used to produce the simulated accelerometer and
gyroscope measurements. We ran 1000 trials in which we
sampled the measurement noise (120 monocular images,
5950 IMU measurements) and IMU biases, initialized the
pose spline (300 basis functions), and ran Gauss-Newton
to convergence (3 or 4 iterations taking approximately 12
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Fig. 4. A comparison of the uncertainty returned by the estimator (red, solid line) and a histogram of errors (blue bars) for the estimate of the components
of the calibration matrix, T¢ ;, over 1000 simulation trials. When the noise properties of the system are known exactly, the uncertainty returned by the

estimator is an excellent fit to the experimental results.

seconds). The main results of this experiment are shown
in Figure 4. Over 1000 trials, the estimated uncertainty,
plotted as a Gaussian probability density function (PDF),
is an excellent match for the histogram of errors computed
during this simulation. The uncertainties returned by the
estimator were remarkably stable over the 1000 trials; the
spread (difference between the maximum and minimum)
of standard deviations was less than 0.2% of the standard
deviation value. Based on these results, we believe that, given
a sufficiently smooth path of the sensor head and accurate
knowledge of the noise models, our algorithm accurately
estimates the calibration transformation, 7. ;, and reports the
correct uncertainty for the estimate.

2) Real Data: In the second experiment, we used a dataset
collected at the University of Toronto Institute for Aerospace
Studies in which the sensor head shown in Figure 2 was
manipulated by hand over a set of point landmarks for
approximately 2 minutes and 20 seconds. A Vicon motion
capture system tracked the sensor head and the point land-
marks. We believe the output of this system is accurate
enough to use as ground-truth for this experiment.

During this experiment, the sensor head collected 1639
stereo images and 14211 IMU measurements. While it is
clear from the related work that it is possible to process
a dataset of this size using a Gaussian filter, the outlook
for a discrete-time batch algorithm is much more grim; one
must estimate the state at each measurement time. In terms
of our 12 time-varying parameters (6 state and 6 bias), this
would involve estimating 12x15850=190200 state variables
in addition to our time-invariant parameters in a single batch.
While this may be possible using sparse matrix methods, it is
certainly not ideal. In this experiment, we show that, using
our method, we may estimate the trajectory of the sensor
head in continuous time using far fewer parameters.

As the IMU biases are moving slowly, we fixed the number
of knots in the bias spline at 15. For the pose spline encoding
T..:(t), we ran the estimator many times, varying the number
of knots from 10 to 1350, increasing by 10 each time.
For each setting we ran our estimator and evaluated the
root-mean-square (RMS) error of both the translation and
orientation parts of T, ;(t) by comparing them to the track
from the Vicon motion capture system. The estimator was
limited to four iterations and timed on a MacBook Pro with
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Fig. 5. Using a dataset with 1639 images and 14211 IMU measurements,

the number of knots in the spline encoding T3, ;(t) was varied from 10 to
1350 in steps of 10. For each setting we ran our estimator and evaluated the
root-mean-square (RMS) error of both the translation and orientation parts
of T,,;(t) by comparing them to the track from the Vicon motion capture
system shown in Figure 2. The estimator was limited to four iterations and
timed. The plots in this figure show that, when too few knots are used,
the estimation errors can be very large but, as the number of knots is
increased, the spline is able to represent the trajectory. For the dataset used
in Section IV-C.2, between 200 and 300 knots is sufficient to accurately
estimate the path of the sensor head but further knots only increase the
execution time of the estimator. A strength of our approach is that it avoids
overfitting as we increase the number of knots because of the term in (13d).

a 2.66GHz Core 2 Duo and 4GB of 1067MHz DDR3 RAM.

Figure 5 shows the main result of this experiment. When
too few knots are used, the estimation errors can be very
large but, as the number of knots is increased, the spline is
able to represent the trajectory. For the dataset used in this
section, between 200 and 300 knots is sufficient to accurately
estimate the path of the sensor head but additional knots
only serve to increase the execution time of the estimator.
Iterating to convergence with 300 knots took approximately
26 seconds. This is far less than the length of the dataset
(2 minutes and 20 seconds), and thus the approach holds
promise for realtime implementation. In the timing plot of
Figure 5, the execution time is dominated by the solution
of the Aj@* = —b system in (22). We believe that the
performance of this step may be greatly improved using
sparse matrix methods but this implementation is left as
future work; any speedup derived from this would only
strengthen these results.



V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a derivation of the SLAM
problem in continuous time. We showed how to derive
an MAP estimator for this problem by first assuming the
probability densities and processes involved are Gaussian,
representing the state as a weighted sum of continuous
temporal basis functions, and estimating the state and other
parameters using the Gauss-Newton method. We then pre-
sented one possible implementation of this solution method
using B-splines to represent the robot state and evaluated it
by implementing a batch estimator addressing the calibration
of a camera and IMU rigidly mounted to the same sensor
head. To the best of our knowledge, this is the first derivation
of this kind presented in robotics and we have made every
attempt to present our work in steps of increasingly spe-
cific assumptions to encourage the development of different
continuous-time estimators that make different assumptions.

There are many possible avenues of future work, both
theoretical and practical. As another proof of the concepts
presented in this paper, we would like to apply our B-
spline state representation to the second problematic situation
mentioned in our introduction—the estimation of the motion
of a continuously scanning high-rate laser rangefinder. It will
be important to explore the tradeoffs between state-of-the-art
discrete-time estimators and continuous-time estimators—
both parametric as presented in this paper and non-parametric
[23]—when applied to the canonical problems in robotics.
There is also further work to be done on the use of temporal
basis functions to represent robot states, especially on the
choice of basis and knot sequence. Finally, we would like
to see basis-function-formulated SLAM make the leap to an
online algorithm (much the way bundle adjustment did [16],
[17]) as we believe it presents many benefits in terms of re-
duced state variable size and easy handling of asynchronous
measurements [26].
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